Generalized Rudin-Shapiro sequences
Jean-Paul Allouche ; Pierre Liardet
Acta Arithmetica, Tome 58 (1991), p. 1-27 / Harvested from The Polish Digital Mathematics Library
Publié le : 1991-01-01
EUDML-ID : urn:eudml:doc:206424
@article{bwmeta1.element.bwnjournal-article-aav60i1p1bwm,
     author = {Jean-Paul Allouche and Pierre Liardet},
     title = {Generalized Rudin-Shapiro sequences},
     journal = {Acta Arithmetica},
     volume = {58},
     year = {1991},
     pages = {1-27},
     zbl = {0763.11010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav60i1p1bwm}
}
Jean-Paul Allouche; Pierre Liardet. Generalized Rudin-Shapiro sequences. Acta Arithmetica, Tome 58 (1991) pp. 1-27. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav60i1p1bwm/

[000] [1] J.-P. Allouche, Les suites de Rudin-Shapiro généralisées: des suites déterministes de 'dimension' maximale, in: Colloque 'Fractals', C.I.R.M., Marseille 1986.

[001] [2] J.-P. Allouche and M. Mendès France, On an extremal property of the Rudin-Shapiro sequence, Mathematika 32 (1985), 33-38.

[002] [3] J.-P. Allouche and M. Mendès France, Suite de Rudin-Shapiro et modèle d'Ising, Bull. Soc. Math. France 113 (1985), 275-283.

[003] [4] D. W. Boyd, J. Cook and P. Morton, On sequences of ±1's defined by binary patterns, Dissertationes Math. 283 (1989). | Zbl 0684.10011

[004] [5] J. Brillhart and L. Carlitz, Note on the Shapiro polynomials, Proc. Amer. Math. Soc. 25 (1970), 114-118.

[005] [6] J. Brillhart, P. Erdős and P. Morton, On sums of Rudin-Shapiro coefficients II, Pacific J. Math. 107 (1978), 39-69. | Zbl 0469.10034

[006] [7] J. Brillhart und P. Morton, Über Summen von Rudin-Shapiroschen Koeffizienten, Illinois J. Math. 22 (1978), 126-148.

[007] [8] G. Christol, T. Kamae, M. Mendès France et G. Rauzy, Suites algébriques, automates et substitutions, Bull. Soc. Math. France 108 (1980), 401-419. | Zbl 0472.10035

[008] [9] A. Cobham, Uniform tag-sequences, Math. Systems Theory 6 (1972), 164-192. | Zbl 0253.02029

[009] [10] J. Coquet and P. Liardet, A metric study involving independent sequences, J. Analyse Math. 49 (1987), 15-53. | Zbl 0645.10044

[010] [11] A. O. Gelfond, Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith. 13 (1968), 259-265. | Zbl 0155.09003

[011] [12] J.-P. Kahane, Hélices et quasi-hélices, in: Math. Anal. Applic., Part B, Adv. in Math. Suppl. Stud. 7B, 1981, 417-433.

[012] [13] L. Kuipers and H. Niederreiter, Uniform Distributions of Sequences, John Wiley & Sons, New York 1974. | Zbl 0281.10001

[013] [14] M. Lemańczyk, Toeplitz Z₂-extensions, Ann. Inst. H. Poincaré 24 (1) (1988), 1-43.

[014] [15] P. Liardet, Propriétés harmoniques de la numération, d'après Jean Coquet, in: Colloque S.M.F.-C.N.R.S. 'Jean Coquet', Publications Mathématiques d'Orsay 88-02, Orsay 1988, 1-35. | Zbl 0713.11054

[015] [16] P. Liardet, Automata and generalized Rudin-Shapiro sequences, Arbeitsbericht, Math. Institut der Universität Salzburg, 1990.

[016] [17] M. Mendès France et G. Tenenbaum, Dimension des courbes planes, papiers pliés et suite de Rudin-Shapiro, Bull. Soc. Math. France 109 (1981), 207-215. | Zbl 0468.10033

[017] [18] M. Queffélec, Une nouvelle propriété des suites de Rudin-Shapiro, Ann. Inst. Fourier (Grenoble) 37 (2) (1987), 115-138. | Zbl 0597.10054

[018] [19] M. Queffélec, Substitution Dynamical Systems-Spectral Analysis, Lecture Notes in Math. 1294, Springer, 1987.

[019] [20] D. Rider, Transformations of Fourier coefficients, Pacific J. Math. 19 (1966), 347-355. | Zbl 0144.32001

[020] [21] W. Rudin, Some theorems on Fourier coefficients, Proc. Amer. Math. Soc. 10 (1959), 855-859. | Zbl 0091.05706

[021] [22] B. Saffari, Une fonction extrémale liée à la suite de Rudin-Shapiro, C. R. Acad. Sci. Paris 303 (1986), 97-100. | Zbl 0608.10051

[022] [23] A. Salem and A. Zygmund, Some properties of trigonometric series whose terms have random signs, Acta Math. 91 (1954), 245-301. | Zbl 0056.29001

[023] [24] H. S. Shapiro, Extremal problems for polynomials and power series, Thesis, M.I.T., 1951.

[024] [25] A. P. Street, J. S. Wallis and W. D. Wallis, Combinatorics: Room Squares, Sum-free Sets, Hadamard Matrices, Lecture Notes in Math. 292, Springer, 1972. | Zbl 1317.05003