@article{SPS_2002__36__270_0, author = {Leuridan, Christophe}, title = {Th\'eor\`eme de Ray-Knight dans un arbre : une approche alg\'ebrique}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, volume = {36}, year = {2002}, pages = {270-301}, mrnumber = {1971591}, zbl = {1041.60062}, language = {fr}, url = {http://dml.mathdoc.fr/item/SPS_2002__36__270_0} }
Leuridan, Christophe. Théorème de Ray-Knight dans un arbre : une approche algébrique. Séminaire de probabilités de Strasbourg, Tome 36 (2002) pp. 270-301. http://gdmltest.u-ga.fr/item/SPS_2002__36__270_0/
[1] Lévy processes. Cambridge tracts in mathematics 121 (1996). | MR 1406564 | Zbl 0861.60003
[2] Sur la loi des temps locaux browniens pris en temps exponentiel. Séminaire de Probabilité XXII Lecture Notes in Mathematics 1321 (1988), 454-466. | Numdam | MR 960541 | Zbl 0652.60081
,[3] Markov Processes and Potential Theory, Academic Press, New York (1968). | MR 264757 | Zbl 0169.49204
,[4] Local times and quantum fields. Seminar on Stochastic Processes, Birkhauser 26-4 (1983), 69-89. | MR 902412 | Zbl 0554.60058
[5] Dynkin's isomorphism theorem and Ray-Knight theorems. Probability Theory and Related Fields 99 (1994), 321-335. | MR 1278888 | Zbl 0801.60064
[6] Une version sans conditionnement du théorème d'isomorphisme de Dynkin. Séminaire de Probabilité XXIX Lecture Notes in Mathematics 1613 (1995), 266-289. | Numdam | MR 1459468 | Zbl 0849.60075
[7] A necessary and sufficient condition for the Markov property of the local time process. Annals of Probability 21-3 (1993), 1591-1598. | MR 1235430 | Zbl 0788.60091
,[8] A counterexample for the Markov property of local time for diffusions on graphs. Séminaire de Probabilité XXIX Lecture Notes in Mathematics 1613 (1995), 260-265. | Numdam | MR 1459467 | Zbl 0849.60076
,[9] On the Markov property of local time for Markov processes on graphs. Stochastic Processes and their Applications 64 (1996), 153-172. | MR 1424233 | Zbl 0879.60075
,[10] Kac's moment formula and the Feynman-Kac formula for additive functionals of a Markov process. Stochastic Processes and their Applications 79 (1999), 117-134. | MR 1670526 | Zbl 0962.60067
.,[11] Ray-Knight's theorem on Brownian local times and Tanaka's formula. Seminar on Stochastic Processes, Birkhauser (1983) 131-142. | MR 902415 | Zbl 0561.60077
[12] Random walks and a sojourn density process of Brownian motion. Transactions of American Mathematical Society 109 (1963) 56-86. | MR 154337 | Zbl 0119.14604
[13] Le théorème de Ray-Knight à temps fixe. Séminaire de Probabilité XXXII Lecture Notes in Mathematics 1686 (1998), 376-396. | Numdam | MR 1655305 | Zbl 0919.60073
[14] Sample path properties of local times of strongly symmetric Markov processes via Gaussian processes. Annals of probability 20-4 (1992), 1603-1684. | MR 1188037 | Zbl 0762.60068
,[15] Moment generating functions for local times of strongly symmetric Markov processes and random walks. Proceedings of the conference "Probability in Banach Spaces" Birkhauser 8 (1992). | MR 1227631 | Zbl 0788.60092
,[16] Sur les lois de certaines fonctionnelles additives : application aux temps locaux Publications de l'Institut de Statistiques des Universités de Paris, 15 (1966), 295-310. | MR 208679 | Zbl 0144.40102
[17] A decomposition of Bessel bridges. Zeitschrift für Wahrscheinlichkeitstheorie und Verwante Gebiete 59 (1982) 425-457. | MR 656509 | Zbl 0484.60062
,[18] Sojourn times of diffusion processes. Illinois Journal of Mathematics 7 (1963) 615-630. | MR 156383 | Zbl 0118.13403
[19] Diffusions, Markov processes, and Martingales Volume 1 : Foundations, second edition, John Wiley and Sons (1994). | MR 1331599 | Zbl 0826.60002
,[20] On the Ray-Knight property of local times. Journal of London Mathematical Society 31 (1985), 377-384. | MR 809960 | Zbl 0535.60070
[21] Excursions and local time. Temps Locaux, Astérisque 52-53 (1978),159-192.