@article{SPS_2001__35__28_0, author = {Privault, Nicolas}, title = {Quantum stochastic calculus for the uniform measure and Boolean convolution}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, volume = {35}, year = {2001}, pages = {28-47}, mrnumber = {1837275}, zbl = {0981.81044}, language = {en}, url = {http://dml.mathdoc.fr/item/SPS_2001__35__28_0} }
Privault, Nicolas. Quantum stochastic calculus for the uniform measure and Boolean convolution. Séminaire de probabilités de Strasbourg, Tome 35 (2001) pp. 28-47. http://gdmltest.u-ga.fr/item/SPS_2001__35__28_0/
[1] Calcul stochastique non-commutatif. In Ecole d'été de Probabilités de Saint-Flour, volume 1608 of Lecture Notes in Mathematics. Springer-Verlag, 1993. | MR 1383121 | Zbl 0878.60041
.[2] Processes with free increments. Math. Z., 227(1):143-174, 1998. | MR 1605393 | Zbl 0902.60060
.[3] Positive definite functions on the free group and the noncommutative Riesz product. Boll. Unione Mat. Ital., A5:13-21, 1986. | MR 833375 | Zbl 0591.43009
.[4] An introduction to probability theory and its applications. Vol. II. John Wiley & Sons Inc., New York, 1966.
.[5] Quantum and non-causal stochastic calculus. Probab. Theory Related Fields, 97:65-80, 1993. | Zbl 0794.60052
.[6] Semimartingales: a Course on Stochastic Processes. de Gruyter, 1982. | MR 688144 | Zbl 0503.60054
.[7] Quantum Probability for Probabilists, volume 1538 of Lecture Notes in Mathematics. Springer-Verlag, 1993. | MR 1222649 | Zbl 0773.60098
.[8] Special Functions of Mathematical Physics. Birkäuser, 1988. | MR 922041 | Zbl 0624.33001
and .[9] An Introduction to Quantum Stochastic Calculus. Birkäuser, 1992. | MR 1164866 | Zbl 0751.60046
.[10] A different quantum stochastic calculus for the Poisson process. Probab. Theory Related Fields, 105:255-278, 1996. | MR 1392454 | Zbl 0849.60056
.[11] Calcul des variations stochastique pour la mesure de densité uniforme. Potential Analysis, 7(2):577-601, 1997. | MR 1467207 | Zbl 0894.60047
.[12] Orthogonal Functions, Revised English Edition. Interscience publishers, New York, 1959. | MR 103368 | Zbl 0084.06106
.[13] Direct sums of tensor products and non-commutative independence. J. Funct. Anal., 133(1):1-9, 1995. | MR 1351638 | Zbl 0868.46048
.[14] A new example of "independence" and "white noise". Probab. Theory Related Fields, 84:141-159, 1990. | MR 1030725 | Zbl 0671.60109
.[15] Boolean convolution. In D. Voiculescu, editor, Free probability theory. Papers from a workshop on random matrices and operator algebra free products, volume 12 of Fields Inst. Commun., pages 267-279, Toronto, 1995. American Mathematical Society. | MR 1426845 | Zbl 0872.46033
and .[16] Free random variables. A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups, volume 1 of CRM Monograph Series. American Mathematical Society, Providence, RI, 1992. | MR 1217253 | Zbl 0795.46049
, , and .