@article{SPS_2000__34__393_0,
author = {Khoshnevisan, Davar and Shi, Zhan},
title = {Fast sets and points for fractional brownian motion},
journal = {S\'eminaire de probabilit\'es de Strasbourg},
volume = {34},
year = {2000},
pages = {393-416},
mrnumber = {1768077},
zbl = {0960.60038},
language = {en},
url = {http://dml.mathdoc.fr/item/SPS_2000__34__393_0}
}
Khoshnevisan, Davar; Shi, Zhan. Fast sets and points for fractional brownian motion. Séminaire de probabilités de Strasbourg, Tome 34 (2000) pp. 393-416. http://gdmltest.u-ga.fr/item/SPS_2000__34__393_0/
[1] AND (1984). Levels at which every Brownian excursion is exceptional. Sém. Prob. XVIII, Lecture Notes in Math. 1059, 1-28, Springer-Verlag, New York. | Numdam | MR 770945 | Zbl 0555.60050
[2] AND (1981). Strong Approximations in Probability and Statistics, Academic Press, New York. | MR 666546 | Zbl 0539.60029
[3] AND (1997). On the Hausdorff dimension of the set generated by exceptional oscillations of a Wiener process. Studia Sci. Math. Hung., 33, 75-110. | MR 1454103 | Zbl 0908.60012
[4] AND (1997). Random fractal functional laws of the iterated logarithm. (preprint) | MR 1645150
[5] (1984). A Course on Empirical Processes. École d'Été de St. Flour 1982. Lecture Notes in Mathematics 1097. Springer, Berlin. | MR 876079 | Zbl 0554.60029
[6] (1971). On the Hausdorff dimension of the range of a stable process with a Borel set. Z. Wahr. verw. Geb., 19, 90-102. | MR 292165 | Zbl 0203.49903
[7] (1981). Trees generated by a simple branching process. J. London Math. Soc., 24, 373-384. | MR 631950 | Zbl 0468.60081
[8] (1985). Some Random Series of Functions, second edition. Cambridge University Press, Cambridge. | MR 833073 | Zbl 0571.60002
[9] (1974). Large increments of Brownian Motion. Nagoya Math. J., 56, 139-145. | MR 370796 | Zbl 0372.60114
[10] , AND (1998). Limsup random fractals. In preparation.
[11] (1977). The exact Hausdorff measure of irregularity points for a Brownian path. Z. Wahr. verw. Geb., 40, 257-282. | MR 458564 | Zbl 0376.60081
[12] AND (1991). Probability in Banach Space, Isoperimetry and Processes, Springer-Verlag, Heidelberg-New York. | MR 1102015 | Zbl 0748.60004
[13] (1937). Théorie de l'Addition des Variables Aléatoires. Gauthier-Villars, Paris. | JFM 63.0490.04 | MR 586767 | Zbl 0016.17003
[14] (1980). Random walks and percolation on trees. Ann. Prob., 18, 931-958. | Zbl 0714.60089
[15] (1968). Hölder conditions for Gaussian processes with stationary increments. Trans. Amer. Math. Soc., 134, 29-52. | MR 230368 | Zbl 0186.50602
[16] AND (1992). Moduli of continuity of local times of strongly symmetric Markov processes via Gaussian processes. J. Theoretical Prob., 5, 791-825. | MR 1182681 | Zbl 0761.60035
[17] (1995). Geometry of Sets and Measures in Euclidean Spaces, Fractals and Rectifiability, Cambridge University Press, Cambridge. | Zbl 0819.28004
[18] AND (1974). How often on a Brownian path does the law of the iterated logarithm fail? Proc. London Math. Soc., 28, 174-192. | MR 359031 | Zbl 0292.60128
[19] (1996). Remarks on intersection-equivalence and capacity-equivalence. Ann. Inst. Henri Poincaré: Physique Théorique, 64, 339-347. | Numdam | MR 1400296 | Zbl 0854.60077
[20] AND (1988), Measuring close approaches on a Brownian path, Ann. Prob., 16, 1458-1480. | MR 958197 | Zbl 0659.60113
[21] AND (1994). Continuous Martingales and Brownian Motion, second edition. Springer, Berlin. | MR 1303781 | Zbl 0804.60001
[22] AND (1986). Empirical Processes with Applications to Statistics. Wiley, New York. | MR 838963 | Zbl 1170.62365
[23] (1966). Multiple points for the sample paths of the symmetric stable process, Z. Wahr. ver. Geb., 5, 247-64. | MR 202193 | Zbl 0146.37905
[24] (1986). The measure theory of random fractals. Math. Proc. Camb. Phil. Soc., 100, 383-406. | MR 857718 | Zbl 0622.60021