Convergence of a “Gibbs-Boltzmann” random measure for a typed branching diffusion
Harris, Simon C.
Séminaire de probabilités de Strasbourg, Tome 34 (2000), p. 239-256 / Harvested from Numdam
@article{SPS_2000__34__239_0,
     author = {Harris, Simon C.},
     title = {Convergence of a ``Gibbs-Boltzmann'' random measure for a typed branching diffusion},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     volume = {34},
     year = {2000},
     pages = {239-256},
     mrnumber = {1768067},
     zbl = {0985.60053},
     language = {en},
     url = {http://dml.mathdoc.fr/item/SPS_2000__34__239_0}
}
Harris, Simon C. Convergence of a “Gibbs-Boltzmann” random measure for a typed branching diffusion. Séminaire de probabilités de Strasbourg, Tome 34 (2000) pp. 239-256. http://gdmltest.u-ga.fr/item/SPS_2000__34__239_0/

[1] Biggins, J. (1992) Uniform convergence in the branching random walk, Ann. Probab., 20, 137-151 | MR 1143415 | Zbl 0748.60080

[2] Breiman, L. (1968) Probability. Addison-Wesley, London. | MR 229267 | Zbl 0174.48801

[3] Champneys, A., Harris, S.C., Toland, J.F., Warren, J. & Williams, D. (1995) Analysis, algebra and probability for a coupled system of reaction-diffusion equations, Phil. Trans. Roy. Soc. London (A), 350, 69-112. | Zbl 0824.60070

[4] Chauvin, B. & Rouault, A. (1997) Boltzmann-Gibbs weights in the branching random walk. Classical and Modern Branching Processes (ed. Athreya, Krishna, et al.), IMA Vol. Math. Appl., 84, pp 41-50. Springer, New York. | Zbl 0866.60074

[5] Git, Y. & Harris, S.C. (2000) Large-deviations and martingales for a typed branching diffusion: II, (In preparation).

[6] Harris, S.C. & Williams, D. (1996) Large-deviations and martingales for a typed branching diffusion : I, Astérisque, 236, 133-154. | Zbl 0857.60088

[7] Harris, S.C. (2000) A typed branching diffusion, a reaction-diffusion equation and travelling-waves. (In preparation).

[8] Mckean, H.P. (1975) Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov. Comm. Pure Appl. Math. 28, 323-331. | MR 400428 | Zbl 0316.35053

[9] Mckean, H.P. (1976) Correction to the above. Comm. Pure Appl. Math. 29, 553-554. | MR 423558 | Zbl 0354.35051

[10] Neveu, J. (1987) Multiplicative martingales for spatial branching processes. Seminar on Stochastic Processes (ed. E.Çinlar, K.Chung and R.Getoor), Progress in Probability & Statistics. 15. pp. 223-241. Birkhäuser, Boston. | Zbl 0652.60089

[11] Revuz, D. & Yor, M. (1991) Continuous martingales and Brownian motion. Springer, Berlin. | Zbl 0731.60002

[12] Rogers, L.C.G. & Williams, D. (1994) Diffusions, Markov processes and martingales. Volume 1: Foundations. (Second Edition). Wiley,Chichester and New York. | Zbl 0826.60002

[13] Rogers, L.C.G. & Williams, D. (1987) Diffusions, Markov processes and martingales. Volume 2: Itô Calculus. Wiley, Chichester and New York. | Zbl 0627.60001

[14] Szegö, G. (1967) Orthogonal Polynomials (Third Edition). American Mathematical Society Colloquium Publications, Volume XXIII. | MR 310533