A stochastic differential equation with a unique (up to indistinguishability) but not strong solution
Kallsen, Jan
Séminaire de probabilités de Strasbourg, Tome 33 (1999), p. 315-326 / Harvested from Numdam
@article{SPS_1999__33__315_0,
     author = {Kallsen, Jan},
     title = {A stochastic differential equation with a unique (up to indistinguishability) but not strong solution},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     volume = {33},
     year = {1999},
     pages = {315-326},
     mrnumber = {1768004},
     zbl = {0954.60046},
     language = {en},
     url = {http://dml.mathdoc.fr/item/SPS_1999__33__315_0}
}
Kallsen, Jan. A stochastic differential equation with a unique (up to indistinguishability) but not strong solution. Séminaire de probabilités de Strasbourg, Tome 33 (1999) pp. 315-326. http://gdmltest.u-ga.fr/item/SPS_1999__33__315_0/

Bauer, H., (1991). Wahrscheinlichkeitstheorie, 4th edn. De Gruyter, Berlin. | MR 1150240 | Zbl 0714.60001

Jacod, J., (1979). Calcul Stochastique et Problèmes de Martingales, Lecture Notes in Mathematics, vol. 714. Springer, Berlin. | MR 542115 | Zbl 0414.60053

Karatzas, I. and Shreve, S., (1991). Brownian Motion and Stochatic Calculus, 2nd edn. Springer, New York. | MR 1121940 | Zbl 0734.60060

Lasota, A. and Mackey, M., (1985). Probabilistic Properties of Deterministic Systems. Cambridge University Press, Cambridge. | MR 832868 | Zbl 0606.58002

Protter, P., (1992). Stochastic Integration and Differential Equations, 2nd edn. Springer, Berlin.

Revuz, D. and Yor, M., (1994). Continuous Martingales and Brownian Motion, 2nd edn. Springer, Berlin. | MR 1303781 | Zbl 0804.60001

Tsirel'Son, B., (1975). An Example of a Stochastic Differential Equation Having No Strong Solution. Theory of Probability and Applications 20, 416-418. | MR 375461 | Zbl 0353.60061