@article{SPS_1998__32__86_0, author = {Heck, Matthias K.}, title = {Homogeneous diffusions on the Sierpinski gasket}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, volume = {32}, year = {1998}, pages = {86-107}, mrnumber = {1655146}, zbl = {0917.60073}, language = {en}, url = {http://dml.mathdoc.fr/item/SPS_1998__32__86_0} }
Heck, Matthias K. Homogeneous diffusions on the Sierpinski gasket. Séminaire de probabilités de Strasbourg, Tome 32 (1998) pp. 86-107. http://gdmltest.u-ga.fr/item/SPS_1998__32__86_0/
1. Brownian motion on the Sierpinski gasket. Probab. Theory Related Fields 79, 543-623. | MR 966175 | Zbl 0635.60090
and (1988).2. Harmonic analysis and the theory of probability, Univ. of California Press, Berkeley. | MR 72370 | Zbl 0068.11702
(1955).3. Random walks and diffusions on fractals. In: Kesten, H. (ed.)Percolation theory and ergodic theory of infinite particle systems. (IMA Math. Appl., vol.8.) Springer, New York, p. 121-129. | MR 894545 | Zbl 0621.60073
(1987).4. Asymptotically one-dimensional diffusions on the Sierpinski gasket and the abc-gaskets. Probab. Theory Related Fields 100, 85-116. | MR 1292192 | Zbl 0808.60067
, and (1994).5. A perturbation result for the asymptotic behavior of matrix powers. J. Theoret. Probability 9, 647-658. | MR 1400592 | Zbl 0947.60502
(1996).6. A first course in stochastic processes. Academic Press, New York. | MR 208657 | Zbl 0177.21102
(1966).7. Construction and some properties of a class of non-symmetric diffusion processes on the Sierpinski gasket. In: Elworthy, K.D. and Ikeda, N. Asymptotic Problems in Probability Theory, Pitman. | Zbl 0787.60100
8. A diffusion process on a fractal. In: Ito, K. and Ikeda, N. (eds.) Symposium on Probabilistic Methods in Mathematical Physics. Proceedings Taniguchi Symposium, Katata 1985. Academic Press, Amsterdam, p. 251-274. | MR 933827 | Zbl 0645.60081
(1987).9. Brownian motion on nested fractals. Mem. Amer. Math. Soc. 420. | MR 988082 | Zbl 0688.60065
(1990).10. Multi type branching processes, American Elsevier Publishing Company, New York.
(1971).