@article{SPS_1998__32__128_0, author = {Amghibech, S.}, title = {Criteria of regularity at the end of a tree}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, volume = {32}, year = {1998}, pages = {128-136}, mrnumber = {1655148}, zbl = {0917.60070}, language = {en}, url = {http://dml.mathdoc.fr/item/SPS_1998__32__128_0} }
Amghibech, S. Criteria of regularity at the end of a tree. Séminaire de probabilités de Strasbourg, Tome 32 (1998) pp. 128-136. http://gdmltest.u-ga.fr/item/SPS_1998__32__128_0/
[1] Random Walk on Tree and Capacity in the Interval. Ann. Inst. H. Poincaré sect B. 28, 4 (1992), 557-592. | Numdam | MR 1193085 | Zbl 0767.60061
, AND[2] Martin capacity for Markov chains. Ann. Probability. 23, 3 (1995), 1332-1346. | MR 1349175 | Zbl 0840.60068
, , AND .[3] Fonctions harmoniques sur un arbre. Symposia. Math. Acadi 3 (1972), 203-270. | MR 353467 | Zbl 0283.31005
[4] Fonctions of One Complex Variable II. Springer-Verlag, 1995. | MR 1344449 | Zbl 0887.30003
[5] Classical Potential Theory. Springer-Verlag, 1984. | MR 731258 | Zbl 0549.31001
[6] The Dirichlet problem at infinity for random walks on graphs with a strong isoperimetric inequality. Probab. Theory Relat. Fields 91, 3-4 (1992), 445-466. | MR 1151805 | Zbl 0739.60004
, AND[7] Wiener's Test and Markov Chains. J. Math. Anal. Appl. 6 (1963), 58-66. | MR 143258 | Zbl 0238.60044
[8] Random Walk and Percolation on Trees. Ann. Probability. 18, 3 (1990), 931-958. | MR 1062053 | Zbl 0714.60089
[9] Markov Chains. North Holland, 1975. | MR 415773 | Zbl 0332.60045
[10] Potential Theory on Infinite Networks. Springer-Verlag, 1994. | MR 1324344 | Zbl 0818.31001
[11] Potential Theory in Modern Function Theory. Maruzen Co. LTD, Tokyo,1959. | MR 114894 | Zbl 0087.28401
[12] Behaviour at infinity and harmonic functions of random walks on graphs. Probability Mesures on Groups X. ed. H. HEYER Plenum Press, New York,1991. | MR 1179003 | Zbl 0821.60015