An Itô type isometry for loops in 𝐑 d via the brownian bridge
Gosselin, Pierre ; Wurzbacher, Tilmann
Séminaire de probabilités de Strasbourg, Tome 31 (1997), p. 225-231 / Harvested from Numdam
Publié le : 1997-01-01
@article{SPS_1997__31__225_0,
     author = {Gosselin, Pierre and Wurzbacher, Tilmann},
     title = {An It\^o type isometry for loops in $\mathbf {R}^d$ via the brownian bridge},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     volume = {31},
     year = {1997},
     pages = {225-231},
     mrnumber = {1478731},
     zbl = {0884.60046},
     language = {en},
     url = {http://dml.mathdoc.fr/item/SPS_1997__31__225_0}
}
Gosselin, Pierre; Wurzbacher, Tilmann. An Itô type isometry for loops in $\mathbf {R}^d$ via the brownian bridge. Séminaire de probabilités de Strasbourg, Tome 31 (1997) pp. 225-231. http://gdmltest.u-ga.fr/item/SPS_1997__31__225_0/

[BR] M.J. Bowick and S.G. Rajeev, The holomorphic geometry of closed bosonic string theory and Diff(S1)/S1, Nucl. Phys. B 293 (1987) 348-384. | MR 908048

[DMM] C. Dellacherie, B. Maisonneuve et P.-A. Meyer, Probabilités et Potentiel. Chapitres X VII à XXIV (Hermann, Paris 1992).

[GW] P. Gosselin and T. Wurzbacher, A stochastic approach to the Virasoro anomaly in quantization of strings in flat space, Preprint 1996. | MR 1632128

[HLP] G. Hardy, J.E. Littlewood and G. Pólya, Inequalities (Cambridge at the University Press 1934). | JFM 60.0169.01 | Zbl 0010.10703

[HT] W. Hackenbroch undA. Thalmaier, Stochastische Analysis (B.G.Teubner, Stuttgart 1994). | MR 1312827 | Zbl 0815.60046

[JY] T. Jeulin et M. Yor, Inégalité de Hardy, semi-martingales, et faux-amis, Séminaire de Probabilités XIII (1977/78), LNM 721, 332-359. | Numdam | MR 544805 | Zbl 0419.60049

[M] P.-A. Meyer, Quantum Probability for Probabilists (Springer LNM 1538, Berlin Heidelberg 1993). | MR 1222649 | Zbl 0773.60098

[N] J. Neveu, Processus aléatoires gaussiens (Les Presses de l'Université de Montréal 1968). | MR 272042 | Zbl 0192.54701

[PS] A. Pressley and G. Segal, Loop groups (Oxford University Press 1986). | MR 900587 | Zbl 0618.22011