@article{SPS_1997__31__190_0, author = {Khoshnevisan, Davar}, title = {Some polar sets for the brownian sheet}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, volume = {31}, year = {1997}, pages = {190-197}, mrnumber = {1478727}, zbl = {0886.60039}, language = {en}, url = {http://dml.mathdoc.fr/item/SPS_1997__31__190_0} }
Khoshnevisan, Davar. Some polar sets for the brownian sheet. Séminaire de probabilités de Strasbourg, Tome 31 (1997) pp. 190-197. http://gdmltest.u-ga.fr/item/SPS_1997__31__190_0/
[A1] The Geometry of Random Fields, Wiley, London | MR 611857 | Zbl 0478.60059
(1981).[A2] An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes, Institute of Mathematical Statistics Lecture Notes-Monograph Series, Vol. 12 | MR 1088478 | Zbl 0747.60039
(1990).[BBK] Intersection local time for points of infinite multiplicity, Ann. Prob., 22, 566-625 | MR 1288124 | Zbl 0814.60078
, AND (1994).[BK] Intersection local times and Tanaka formulas, Ann. Inst. Henri Poincaré: Prob. et Stat., 29, 419-451 | Numdam | MR 1246641 | Zbl 0798.60072
AND (1993).[BG] Markov Processes and Potential Theory. Academic Press. New York | MR 264757 | Zbl 0169.49204
AND (1968).[C] Hausdorff dimension of multiple points of the (N.d) Wiener process, Indiana Univ. Math. J.. 43(1), 55-60 | MR 1275452 | Zbl 0797.60065
(1994).[DEK1] Double points of paths of Brownian motion in n-space, Acta. Sci. Math. (Szeged), 12. 74-81 | MR 34972 | Zbl 0036.09001
, AND (1950).[DEK2] Multiple points of Brownian motion in the plane, Bull. Res. Council Israel Section F, 3, 364-371 | MR 67402
, AND (1954).[DEKT] Triple points of Brownian motion in 3-space. Proc. Camb. Phil. Soc., 53, 856-862 | MR 94855 | Zbl 0208.44103
, , AND (1957).[D1] Self-intersection gauge for random walks and for Brownian motion, Ann. Prob., 16, 1-57 | MR 920254 | Zbl 0638.60081
(1988).[D2] Random fields associated with multiple points of Brownian motion, J. Funct. Anal., 62, 397-434 | MR 794777 | Zbl 0579.60081
(1985).[E] Sample function properties of multiparameter stable processes, Zeit. Wahr. verw. Geb., 56, 195-228 | MR 618272 | Zbl 0471.60046
(1981).[E1] Multiple points in the sample paths of a Lévy process, Prob. Th. Rel. Fields, 76, 359-367 | MR 912660
(1987)[E2] Potential theory for a family of several Markov processes, Ann. Inst. Henri Poincaré: Prob. et Stat., 23, 499-530 | Numdam | MR 906728 | Zbl 0625.60086
(1987)[FS-1] Capacity and energy for multi-parameter Markov processes, Ann. Inst. Henri Poincaré: Prob. et Stat., 25, 325-350 | Numdam | MR 1023955 | Zbl 0689.60071
AND (1989).[FS-2]
AND Forthcoming Manuscript.[F] 95b:60100, February 1995 issue
(1995). Math. Reviews, review[HaP] Uniform dimension results for processes with independent increments, Zeit. Wahr. verw. Geb., 28, 277-288 | MR 362508 | Zbl 0268.60063
AND (1974).[H] Multiple points for transient symmetric Lévy processes, Zeit. Wahr. verw. Geb. 49, 13-21 | MR 539660 | Zbl 0398.60042
(1974).[K] Some Random Series of Functions, Cambridge Univ. Press, Cambridge, U.K. | MR 833073 | Zbl 0571.60002
(1985).[Ka] Une propriété métrique du mouvement brownien, C.R. Acad. Sci. Paris, Sér. A, 268, 727-728 | MR 240874 | Zbl 0174.21401
(1969).[LG] Some Properties of Planar Brownian Motion, Ecole d'été de Probabilités de St-Flour XX, LNM 1527, 111-235 | MR 1229519 | Zbl 0779.60068
(1990).[OP] Sample functions of the N-parameter Wiener process, Ann. Prob., 1, 138-163 | MR 346925 | Zbl 0284.60036
AND (1973).[P] Intersection-equivalence of Brownian paths and certain branching processes, Comm. Math. Phys. (To appear) | MR 1384142 | Zbl 0851.60080
(1995).[R1] Joint continuity of renormalized intersection local times. Preprint
(1995).[R2] Stochastic integrals and intersections of Brownian sheet. Unpublished manuscript
(1984).[R3] Self-intersections of random fields, Ann. Prob., 12. 108-119 | MR 723732 | Zbl 0536.60066
(1984).[S] Energy. and intersections of Markov chains, Proceedings of the IMA Workshop on Random Discrete Structures (To appear) | MR 1395618 | Zbl 0845.60068
(1995).[Sh] White noise analysis and Tanaka formulae for intersections of planar Brownian motion, Nagoya Math. J., 122, 1-17 | MR 1114018 | Zbl 0759.60041
(1991).[T1] The measure theory of random fractals. Math. Proc. Camb. Phil. Soc., 100. 383-406 | MR 857718 | Zbl 0622.60021
(1986).[T2] Multiple points for the sample paths of a transient stable process, J. Math. Mech., 16, 1229-1246 | Zbl 0178.19301
(19).[T3] Multiple points for the sample paths of the symmetric stable process, Zeit. Wahr. verw. Geb., 5, 247-264 | MR 202193 | Zbl 0146.37905
(1966).[V] Appendix to "Euclidean Quantum Field Theory", by K. Symanzik. In Local Quantum Theory (ed.: R. Jost). Academic Press, New York
(1969).[W] Sur les singularités des temps locaux d'intersection du mouvement brownien plan, Ann. Inst. Henri. Poincaré: Prob. et Stat., 29, 391-418 | Numdam | MR 1246640 | Zbl 0798.60071
(1993).[Y] Compléments aux formules de Tanaka-Rosen, Sém. de Prob. XIX, LNM 1123, 332-349 | Numdam | MR 889493 | Zbl 0563.60073
(1985).