@article{SPS_1995__29__202_0, author = {Qian, Zhongmin and He, Sheng-Wu}, title = {On the hypercontractivity of Ornstein-Uhlenbeck semigroups with drift}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, volume = {29}, year = {1995}, pages = {202-217}, mrnumber = {1459461}, zbl = {0833.60081}, language = {fr}, url = {http://dml.mathdoc.fr/item/SPS_1995__29__202_0} }
Qian, Zhongmin; He, Sheng-Wu. On the hypercontractivity of Ornstein-Uhlenbeck semigroups with drift. Séminaire de probabilités de Strasbourg, Tome 29 (1995) pp. 202-217. http://gdmltest.u-ga.fr/item/SPS_1995__29__202_0/
[1] Etude probabiliste des transformees de Riesz et de l'espace H1 sur les spheres, Sem. Prob. XVIII, Lecture Notes in Math. 1059, 197-218, Springer, 1984. | Numdam | MR 770962 | Zbl 0571.60012
,[2] L'hypercontractivite et son utilisation en theorie des semi-groupes, Preprint, 1993. | MR 1307413
,[3] Diffusions hypercontractives, Sem. Prob. XIX, Lecture Notes in Math. 1123, 177-206, Springer, 1985. | Numdam | MR 889476 | Zbl 0561.60080
and ,[4] Propaganda for Γ2, in From Local Times to Global Geometry, Control and Physics, 39-46, K. D. Elworthy (ed.), Longman Sci. Tech., 1986. | MR 894521 | Zbl 0608.58043
and ,[5] Dirichlet Forms and Analysis on Wiener Space, Walter de Gruyter, 1991. | MR 1133391 | Zbl 0748.60046
and ,[6] Heat Kernels and Spectral Theory, Cambridge Univ. Press, 1989. | MR 990239 | Zbl 0699.35006
,[7] Probabilites et Potentiel IV, Hermann, 1991. | MR 488194
and ,[8] Dirichlet Forms and Markov Processes, North Holland, 1980. | MR 569058 | Zbl 0422.31007
,[9] Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975),1061-1083. | MR 420249 | Zbl 0318.46049
,[10] Gaussian measures on white noise space, Preprint, 1993. | MR 1459368
and ,[11] White Noise - An Infinite Dimensional Calculus, Kluwer Academic Publ., 1993. | MR 1244577 | Zbl 0771.60048
, , and ,[12] An Introduction to Non-symmetric Dirichlet Forms , Springer, 1992. | Zbl 0826.31001
and ,[13] A quadratic interaction in two dimension, In Mathematical Theory of Elementary Particles, R. Goodman and I. Segal (eds.), M.I.T. Press, 1966. | MR 210416
,[14] The free Markov field, J. Funct. Anal. 12(1973), 211-227. | MR 343816 | Zbl 0273.60079
,[15] A characterization on Hida distribution, J. Funct. Anal. 101(1991), 212-229. | MR 1132316 | Zbl 0826.46035
and ,[16] Some results about test and generalized functionals of white noise, In Proc. Singapore Prob. Conf., L.H.Y. Chen et al (eds.), Walter de Gruyter, 1992. | MR 1188716 | Zbl 0765.60030
and ,[17] On the Martin boundary of the Ornstein-Uhlenbeck operator on the white noise space, Preprint, 1993.
,[18] On the parabolic Martin boundary of the Ornstein-Uhlenbeck operator on Wiener space, Ann. Prob. (1992), 1063-1085. | MR 1159586 | Zbl 0761.60067
,[19] Analytic inequalities, isoperimetric inequalities and logarithmic Sobolev inequalities, J. Funct. Anal. 64(1985), 296-313. | MR 812396 | Zbl 0578.46028
,[20] Methods of Modern Mathematical Physics, Academic Press, 1985. | MR 751959
and ,[21] The P(φ)2 Euclidean (Quantum) Field Theory, Princeton Univ. Press, 1974. | MR 489552 | Zbl 1175.81146
,[22] Some recent developments in white noise analysis. In Probability and Statistics, A. Badrikian et al (eds.), World Scientific, 1993.
,[23] Positive generalized functionals, Hiroshima Math. J. 20(1990), 137-157. | MR 1050432 | Zbl 0714.60052
,