On quantum extensions of the Azéma martingale semi-group
Chebotarev, Alexander M. ; Fagnola, Franco
Séminaire de probabilités de Strasbourg, Tome 29 (1995), p. 1-16 / Harvested from Numdam
Publié le : 1995-01-01
@article{SPS_1995__29__1_0,
     author = {Chebotarev, Alexander M. and Fagnola, Franco},
     title = {On quantum extensions of the Az\'ema martingale semi-group},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     volume = {29},
     year = {1995},
     pages = {1-16},
     mrnumber = {1459443},
     zbl = {0956.46044},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/SPS_1995__29__1_0}
}
Chebotarev, Alexander M.; Fagnola, Franco. On quantum extensions of the Azéma martingale semi-group. Séminaire de probabilités de Strasbourg, Tome 29 (1995) pp. 1-16. http://gdmltest.u-ga.fr/item/SPS_1995__29__1_0/

[1] J. Azéma, M. Yor: Etude d'une martingale remarquable. Sém. Prob. XXIII (1989), 88-130. | Numdam | MR 1022900 | Zbl 0743.60045

[2] A.M. Chebotarev: The theory of conservative dynamical semigroups and its applications. Preprint MIEM n.1 March 1990.

[3] A.M. Chebotarev, F. Fagnola: Sufficient conditions for conservativity of quantum dynamical semigroups. J. Funct. Anal. 118 (1993), 131-153. | Zbl 0801.46083

[4] E.B. Davies: Quantum dynamical semigroups and the neutron diffusion equation. Rep. Math. Phys. 11 (1977), 169-188 . | Zbl 0372.47020

[5] M. Emery: On the Azéma martingales. Sém. Prob. XXIII (1989), 67-87. | Numdam | Zbl 0753.60045

[6] M. Emery: Sur les martingales d'Azéma (Suite). Sém. Prob. XXIV (1990), 442-447. | Numdam | MR 1071559 | Zbl 0712.60048

[7] F. Fagnola: Unitarity of solutions to quantum stochastic differential equations and conservativity of the associated semigroups. Quantum Probability and Related Topics VII pp. 139-148. | MR 1186660 | Zbl 0789.47027

[8] A. Mohari, K.B. Sinha: The minimal quantum dynamical semigroup and its dilations. Proc. Indian Ac. Sc. 102 n.3 (1992), 159-173. | MR 1213635 | Zbl 0766.60119

[9] K.R. Parthasarathy: Remarks on the quantum stochastic differential equation dX = (c-1)XdΛ + dQ. I.S.I. Technical Report n. 8809. (1988).