@article{SPS_1992__26__95_0, author = {Mountford, Thomas}, title = {Quasi-everywhere upper functions}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, volume = {26}, year = {1992}, pages = {95-106}, mrnumber = {1231986}, zbl = {0765.60079}, language = {en}, url = {http://dml.mathdoc.fr/item/SPS_1992__26__95_0} }
Mountford, Thomas S. Quasi-everywhere upper functions. Séminaire de probabilités de Strasbourg, Tome 26 (1992) pp. 95-106. http://gdmltest.u-ga.fr/item/SPS_1992__26__95_0/
On the Law of the Iterated Logarithm. Annals of Mathematics 43, 419-436. | MR 6630 | Zbl 0063.01264
(1943):Dirichelet Forms and Markov Processes. North-Holland, New York. | MR 569058 | Zbl 0422.31007
(1980):Basic Properties of Brownian Motion and a Capacity on Wiener SpaceJ. Math. Soc. Japan 36, No. 1, 147-175. | MR 723601 | Zbl 0522.60081
(1984):Brownian motion and Stochastic Calculus Springer-Verlag, New York. | MR 917065 | Zbl 0638.60065
and (1988):On the Existence of Intersectional Local Time except on zero Capacity Set. Osaka J. Math. 21, 913-929. | MR 765364 | Zbl 0551.60084
and (1984):Note sur les Processus d'Ornstein-Uhlenbeck. Seminaire de Probabilites XV1. Lecture Notes in Mathematics, 920 Springer. | Numdam | MR 420878 | Zbl 0481.60041
(1980):On the Existence of Self-intersections for Quasi-everywhere Brownian Path in 3-space. Annals of Probability 17, 2, 482-502. | MR 985374 | Zbl 0714.60067
(1989):On the Quasi-everywhere Existence of the Local Time of 1-dimensional Brownian Motion. Osaka J. Math. 21, 621-627. | MR 759485 | Zbl 0551.60076
(1984):An Introduction to Stochastic Partial Differential Equations.Ecole d'Ete de Probabilites de Saint Flour XIV 265-437. Springer. | MR 876085 | Zbl 0608.60060
(1984):