@article{SPS_1990__24__453_0, author = {Hu, Yao-Zhong}, title = {Calculs formels sur les e.d.s. de Stratonovitch}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, volume = {24}, year = {1990}, pages = {453-460}, mrnumber = {1071561}, zbl = {0702.60055}, language = {fr}, url = {http://dml.mathdoc.fr/item/SPS_1990__24__453_0} }
Hu, Yao-Zhong. Calculs formels sur les e.d.s. de Stratonovitch. Séminaire de probabilités de Strasbourg, Tome 24 (1990) pp. 453-460. http://gdmltest.u-ga.fr/item/SPS_1990__24__453_0/
[1] Flots et séries de Taylor stochastiques. Prob. Th. Rel. Fields, 81, 1989, p.29-77. | MR 981567 | Zbl 0639.60062
).[2] Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula. Ann. Math., 65, 1957, p. 163-178. | MR 85251 | Zbl 0077.25301
).[3] Expansion of solutions of differential systems. Arch. Rat. Mech. Anal., 13, 1963, p. 348-363. | MR 157032 | Zbl 0117.04802
).[4] One Parameter Semi-groups, Academic Press, 1980. | MR 591851 | Zbl 0457.47030
).[5] Algèbres de Lie nilpotentes, formule de Campbell-Baker-Hausdorff et intégrales itérées de Chen. Sém. Prob. XVI, LN 920, p. 257-267, Springer 1982. | Numdam | MR 658689 | Zbl 0495.60064
) et ).[6] Perturbation theory for linear operators, 2nd edition, Springer 1976. | MR 407617 | Zbl 0342.47009
).[7] On the representation of solutions of stochastic differential equations. Sém. Prob. XIV, LN 784, p. 282-304, Springer 1980. | Numdam | MR 580134 | Zbl 0438.60047
).[8] Modeling and approximation of stochastic differential equations driven by semimartingales. Stochastics, 4, 1981, p. 223-245. | MR 605630 | Zbl 0456.60064
).[9] Stochastic differential equations J. Multiv. Anal., 6,1975, p.121-177. | MR 373006 | Zbl 0323.60059
).[10] Leçons de géométrie : Groupes et algèbres de Lie. Editions MIR, Moscou 1982. | MR 831660
).[11] The Campbell-Baker-Hausdorff-Dynkin formula and solutions of differential equations. J. Funct. Anal., 72, 1987, p. 320-345. | MR 886816 | Zbl 0623.34058
).