The best estimation of a ratio inequality for continuous martingales
Kikuchi, Masato
Séminaire de probabilités de Strasbourg, Tome 23 (1989), p. 52-56 / Harvested from Numdam
Publié le : 1989-01-01
@article{SPS_1989__23__52_0,
     author = {Kikuchi, Masato},
     title = {The best estimation of a ratio inequality for continuous martingales},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     volume = {23},
     year = {1989},
     pages = {52-56},
     mrnumber = {1022897},
     zbl = {0745.60042},
     language = {en},
     url = {http://dml.mathdoc.fr/item/SPS_1989__23__52_0}
}
Kikuchi, Masato. The best estimation of a ratio inequality for continuous martingales. Séminaire de probabilités de Strasbourg, Tome 23 (1989) pp. 52-56. http://gdmltest.u-ga.fr/item/SPS_1989__23__52_0/

[1] R. Bañuelos, A sharp good-λ inequality with an application to Riesz transforms, Michigan Math. J., 35 (1988), 117 - 125. | MR 931943 | Zbl 0662.60057

[2] N. Kazamaki and M. Kikuchi, Quelques inégalités des rapports pour martingales continues, C. R. Acad. Sci. Paris, t.305, Série 1 (1987), 37 - 38. | MR 902285 | Zbl 0639.60023

[3] T. Murai and A. Uchiyama, Good λ inequalities for the area integral and the nontangential maximal function, Studia Math., 83 (1986), 251 - 262. | MR 850827 | Zbl 0611.42010