Multiple points of Markov processes in a complete metric space
Rogers, L.C.G.
Séminaire de probabilités de Strasbourg, Tome 23 (1989), p. 186-197 / Harvested from Numdam
@article{SPS_1989__23__186_0,
     author = {Rogers, L.C.G.},
     title = {Multiple points of Markov processes in a complete metric space},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     volume = {23},
     year = {1989},
     pages = {186-197},
     mrnumber = {1022911},
     zbl = {0746.60074},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/SPS_1989__23__186_0}
}
Rogers, L.C.G. Multiple points of Markov processes in a complete metric space. Séminaire de probabilités de Strasbourg, Tome 23 (1989) pp. 186-197. http://gdmltest.u-ga.fr/item/SPS_1989__23__186_0/

[1] Dynkin, E.B.. Multiple path integrals. Adv. Appl. Math. 7,205-219,1986. | MR 845377 | Zbl 0604.60075

[2] Evans, S.N. Potential theory for a family of several Markov processes. Ann. Inst. Henri Poincaré 23, 499-530, 1987. | Numdam | MR 906728 | Zbl 0625.60086

[3] Evans, S.N. Multiple points in the sample paths of a Lévy process. Preprint, 1987. | MR 912660

[4] Geman, D., Horowitz, J., and Rosen, J.. A local time analysis of intersections of Brownian paths in the plane. Ann. Prob. 12, 86-107, 1984. | MR 723731 | Zbl 0536.60046

[5] Hawkes, J. Potential theory of Lévy processes. Proc. London Math. Soc. 38, 335-352,1979. | MR 531166 | Zbl 0401.60069

[6] Legall, J.-F., Rosen, J. and Shieh, N.R. Multiple points of Lévy processes. Preprint, 1987.

[7] Rogers, L.C.G. and Williams, D. Diffusions, Markov Processes, and Martingales, Vol.2. Wiley, Chichester, 1987. | MR 921238 | Zbl 0627.60001

[8] Rosen, J. A local time approach to the self-intersections of Brownian paths in space. Comm. Math. Physics 88, 327-338, 1983. | MR 701921 | Zbl 0534.60070

[9] Rosen, J. Joint continuity of the intersection local times of Markov processes. Ann. Prob. 15, 659-675, 1987. | MR 885136 | Zbl 0622.60084