@article{SPS_1987__21__341_0,
author = {Le Gall, Jean-Fran\c cois},
title = {Temps locaux d'intersection et points multiples des processus de L\'evy},
journal = {S\'eminaire de probabilit\'es de Strasbourg},
volume = {21},
year = {1987},
pages = {341-374},
mrnumber = {941994},
zbl = {0621.60077},
language = {en},
url = {http://dml.mathdoc.fr/item/SPS_1987__21__341_0}
}
Le Gall, Jean-François. Temps locaux d'intersection et points multiples des processus de Lévy. Séminaire de probabilités de Strasbourg, Tome 21 (1987) pp. 341-374. http://gdmltest.u-ga.fr/item/SPS_1987__21__341_0/
[1] Communication personnelle.
[2] ; Markov processes and potentiàl theory. Academic Press, New-York, 1968. | MR 264757 | Zbl 0169.49204
[3] ; Some problems on random walk in space. Proc. Second Berkeley Symp. on Math. Statistics and Probability. University of California Press, Berkeley, 1951, p. 353-367. | MR 47272 | Zbl 0044.14001
[4] Additive functionals of several time-reversible Markov processes. J. Funct. Anal. 42 (1981), 64-101. | MR 620580 | Zbl 0467.60069
[5] Random fields associated with multiple points of the Brownian motion. J. Funct. Anal. 62 (1985), 397-434. | MR 794777 | Zbl 0579.60081
[6] Self-intersection gauge for random walks and for Brownian motion. A paraître dans Ann. Probab. (1987). | MR 920254 | Zbl 0638.60081
[7] Potential theory for a family of several Markov processes. A paraître aux Ann. Inst. Henri Poincaré (1987). | Numdam | MR 906728 | Zbl 0625.60086
[8] ; ; A local time analysis of intersections of Brownian paths in the plane. Ann. Probab. 12 (1984), 86-107. | MR 723731 | Zbl 0536.60046
[9] Potential theory of Lévy processes. Proc. London Math. Soc. (3) (1979), 335-352. | MR 531166 | Zbl 0401.60069
[10] . Multiple points for symmetric Lévy processes. Math. Proc. Cambridge Philos. Soc. 83 (1978), 83-90. | MR 464385 | Zbl 0396.60067
[11] ; Diffusion processes and their sample paths. Second Printing. Springer - Verlag, Berlin, 1974. | MR 345224 | Zbl 0285.60063
[12] Hitting probabilities of single points for processes with stationary independent increments. Mem. Amer. Math. Soc. 93 (1969). | MR 272059 | Zbl 0186.50202
[13] ,Sur la mesure de Hausdorff de la courbe brownienne. Séminaire de Probabilités XIX. Lect. Notes in Math. 1123. Springer - Verlag, Berlin, 1985, p. 297-313. | Numdam | MR 889491 | Zbl 0563.60071
[14] Sur la saucisse de Wiener et les points multiples du mouvement brownien. Ann. Probab. 14 (1986). | MR 866344 | Zbl 0621.60083
[15] Propriétés d'intersection des marches aléatoires, I. Comm. Math. Phys. 104 (1986), 471-507. | MR 840748 | Zbl 0609.60078
[16] Le comportement du mouvement brownien entre les deux instants où il passe par un point double. J. Funct. Anal. 70 (1987). | MR 880979 | Zbl 0624.60090
[17] The exact Hausdorff measure of Brownian multiple points. A paraître dans le Seminar on Stochastic Processes 1986. Birkhäuser. | Zbl 0619.60073
[18] Fluctuation results for the Wiener sausage. Preprint (1986), soumis à Ann. Probab. | MR 942751 | Zbl 0665.60080
[19] ; ;Multiple pointsfor Lévy processes. Preprint (1986).
[20] ; Limit theorems for random walks in the domain of attraction of a stable law. Article en préparation.
[21] ; The packing measure of planar Brownian motion. A paraître dans le Seminar on Stochastic Processes 1986. Birkhäuser. | Zbl 0619.60074
[22] Bases mathématiques du calcul des probabilités. Masson, Paris 1970. | MR 272004 | Zbl 0203.49901
[23] Sojourn times and the exact Hausdorff measure of the sample path for planar Brownian motion. Trans. Amer. Math. Soc. 106 (1963),436-444. | MR 145599 | Zbl 0119.14602
[24] ; Functions continuous and sinpular with respect to a Hausdorff measure. Mathematika 8 (1961), 1-31. | MR 130336 | Zbl 0145.28701
[25] A local time approach to the self-intersections of Brownian paths in space. Comm. Math. Phys. 88 (1983), 327-338. | MR 701921 | Zbl 0534.60070
[26] Joint continuity of the intersection local times of Markov processes. A paraître dans Ann. Probab. (1987). | MR 885136 | Zbl 0622.60084
[27] Continuity and singularity of the intersection local time of stable processes in R2. Preprint (1985). | MR 920256
[28] Some bounds and limiting results for the measure of Wiener sausage of small radius associated to elliptic diffusions. Preprint (1986). | MR 904262
[29] Multiple points for the sample paths of the symmetric stable process. Z. Wahrsch. verw. Gebiete 5 (1966), 247-264. | MR 202193 | Zbl 0146.37905
[30] Sample path properties of a transient stable process. J. Math. Mech. 16 (1967), 1229-1246. | MR 208684 | Zbl 0178.19301
[31] The measure theory of random fractals. Math. Proc. Cambridge Philos. Soc. 100 (1986), 383-406. | MR 857718 | Zbl 0622.60021
[32] ; Packing measure and its evaluation for a Brownian path. Trans. Amer. Math. Soc. 288 (1985), 679-699. | MR 776398 | Zbl 0537.28003
[33] Path decomposition and continuity of local time for one-dimensional diffusions, I. Proc. London Math. Soc (3) 28 (1974), 738-768. | MR 350881 | Zbl 0326.60093
[34] Wiener path intersections and local time. J. Funct. Anal. 30 (1978), 329-340. | MR 518339 | Zbl 0403.60069
[35] Précisions sur l'existence et la continuité des temps locaux d'intersection du mouvement brownien dans Rd. Séminaire de Probabilités XX. Lect. Notes in Math. 1204. Springer - Verlag, Berlin, 1986, p. 532-542. | Numdam | MR 942042 | Zbl 0611.60066