Temps local et superchamp
Le Jan, Yves
Séminaire de probabilités de Strasbourg, Tome 21 (1987), p. 176-190 / Harvested from Numdam
@article{SPS_1987__21__176_0,
     author = {Le Jan, Yves},
     title = {Temps local et superchamp},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     volume = {21},
     year = {1987},
     pages = {176-190},
     mrnumber = {941982},
     zbl = {0632.60049},
     language = {en},
     url = {http://dml.mathdoc.fr/item/SPS_1987__21__176_0}
}
Le Jan, Yves. Temps local et superchamp. Séminaire de probabilités de Strasbourg, Tome 21 (1987) pp. 176-190. http://gdmltest.u-ga.fr/item/SPS_1987__21__176_0/

[B] F.A. Berezin : The method of second quantization. Academic Press, New-York (1966). | MR 208930 | Zbl 0151.44001

[F] M. Fukushima : Dirichlet forms and Markov Processes. North Holland 1980. | MR 569058 | Zbl 0422.31007

[D] E.B. Dynkin : Gaussian and Non gaussian Random fields associated with Markov processes. J.F.A. 55, 344-376, 1984. | MR 734803 | Zbl 0533.60061

[S] P. Sheppard : On the Ray Knight property of local times. J. London Math. Soc. 31, 377-384 (1985). | MR 809960 | Zbl 0535.60070

[L] J.M. Luttinger : The asymptotic evaluation of a class of path integrals. Preprint. (non rigoureux. Il constitue cependant une de nos principales sources cf. début du chapitre 4).

[C.K] M. Campanino & A. Klein : A supersymmetric Transfer Matrix and differentiability of the density of states in the one dimensional Anderson model. Preprint. (Les mêmes résultats ont été étudiés par des méthodes utilisant précisément les temps locaux dans) :

[M.S] P. March & A.S. Sznitman : Some connections between excursion theory and the discrete random schrödinger equation with applications to analycity and smoothness properties of the density of states in one dimension. (A paraître).