Central limit problem and invariance principles on Banach spaces
Mandrekar, Vidyadhar
Séminaire de probabilités de Strasbourg, Tome 17 (1983), p. 425-497 / Harvested from Numdam
Publié le : 1983-01-01
@article{SPS_1983__17__425_0,
     author = {Mandrekar, Vidyadhar},
     title = {Central limit problem and invariance principles on Banach spaces},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     volume = {17},
     year = {1983},
     pages = {425-497},
     mrnumber = {770431},
     zbl = {0508.60012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/SPS_1983__17__425_0}
}
Mandrekar, Vidyadhar. Central limit problem and invariance principles on Banach spaces. Séminaire de probabilités de Strasbourg, Tome 17 (1983) pp. 425-497. http://gdmltest.u-ga.fr/item/SPS_1983__17__425_0/

[1] Billingsley P. (1968) : Convergences of Probability measures, Wiley, New York. | MR 233396 | Zbl 0172.21201

[2] Feller W. (1971) : Introduction to Probability Theory and its applications, Vol. 2, Wiley, New York. | MR 270403 | Zbl 0219.60003

[3] Loeve M. (1968) : Probability Theory, Van Neustrand Princeton.

[4] Parthasarathy K.R. (1967) : Probability measures on metric spaces, Academic Press, N. Y. | Zbl 0153.19101

[1] De Acosta A. (1982) : An invariance principle in probability for triangular arrays of B-valued random vectors, Annals of Probability, 10 . | Zbl 0499.60009

[2] Dabrowski A., Dehling H., Philipp W. (1981) : An almost sure invariance principle for triangular arrays of Banach space valued random variables (preprint).

[3] Dudley R.M. and Philipp W. (1982) : Invariance principles for sums of Banach space valued random elements and empirical processes. Preprint.