Strong existence, uniqueness and non-uniqueness in an equation involving local time
Barlow, Martin T. ; Perkins, Edwin A.
Séminaire de probabilités de Strasbourg, Tome 17 (1983), p. 32-61 / Harvested from Numdam
Publié le : 1983-01-01
@article{SPS_1983__17__32_0,
     author = {Barlow, Martin T. and Perkins, Edwin},
     title = {Strong existence, uniqueness and non-uniqueness in an equation involving local time},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     volume = {17},
     year = {1983},
     pages = {32-61},
     zbl = {0527.60075},
     language = {en},
     url = {http://dml.mathdoc.fr/item/SPS_1983__17__32_0}
}
Barlow, Martin T.; Perkins, Edwin A. Strong existence, uniqueness and non-uniqueness in an equation involving local time. Séminaire de probabilités de Strasbourg, Tome 17 (1983) pp. 32-61. http://gdmltest.u-ga.fr/item/SPS_1983__17__32_0/

1. N. El Karoui, M. Chaleyat-Maurel. Un problème de réflexion et ses applications au temps local et aux equations différentielles stochastiques sur R. Cas continu. In: Temps Locaux-Astérisque 52-53, 117-144 (1978).

2. N. El Karoui Sur les montées des semi-martingales. In: Temps Locaux-Astérisque 52-53, 63-72 (1978).

3. M. Emery, E. Perkins. La Filtration de B+L. Z. Wahrscheinlichkeitstheorie verw. Geb. 59, 383-390 (1982). | MR 721634 | Zbl 0466.60073

4. J.M. Harrison, L.A. Shepp. On skew Brownian motion. Ann. of Probability 9, 309-313 (1981). | MR 606993 | Zbl 0462.60076

5. D. Hoover, E. Perkins. Nonstandard construction of the stochastic integral and applications to stochastic differential equations I, II. (To appear in Trans. Amer. Math. Soc.). | MR 678335 | Zbl 0533.60063

6. K. Ito. Poisson point processes attached to Markov processes. Proc. 6th Berk. Symp. Math. Statist. Prob., 225-239 (1970). | MR 402949 | Zbl 0284.60051

7. J. Jacod, J. Memin. Weak and strong solutions of stochastic differential equations: existence and uniqueness. In Stochastic Integrals, Lect. Notes. Math. 851, Springer (1981). | MR 620991 | Zbl 0471.60066

8. H.J. Keisler. An infinitesimal approach to stochastic analysis. (To appear as an A.M.S. Memoir). | MR 732752 | Zbl 0529.60062

9. S. Kosciuk. Stochastic solutions to partial differential equations. Ph.D. thesis, U. of Wisconsin (1982). | MR 698955

10. J.-F. Legall. Temps locaux et equations différentielles stochastiques. Thèse de troisième cycle, Paris VI (1982).

11. P.A. Loeb. An introduction to nonstandard analysis and hyperfinite probability theory. In: Probabilistic Analysis and Related Topics Vol. 2, 105-142, New York : Academic Press (1979). | MR 556680 | Zbl 0441.03027

12. P. Protter, A.-S. Sznitman. An equation involving local time. Sem. Prob. XVII. Lect. Notes Math. 986, Springer | Numdam | MR 770395 | Zbl 0509.60078

13. T. Yamada, S. Watanabe. On the uniqueness of solutions of stochastic differential equations I. J. Math. Kyoto Univ. II, 155-167 (1971). | MR 278420 | Zbl 0236.60037

14. M. Yor. Sur la continuité des temps locaux associés à certaines semi-martingales. In: Temps Locaux-Astérisque 52-53, 23-35 (1978).

15. A. Dvoreksky, P. Erdos, S. Kakutani. Non-increasing everywhere of the Brownian motion process. Proc. 4th Berk. Sympl Math. Statist. Prob. II, 103-116 (1961). | Zbl 0111.15002

16. J.W. Pitman. One dimensional Brownian motion and the three-dimensional Bessel process. Adv. Appl. Prob. 7, 511-526 (1975). | MR 375485 | Zbl 0332.60055