@article{SPS_1983__17__205_0, author = {Chen, Mu-Fa and Stroock, Daniel W.}, title = {$\lambda \_\pi $-invariant measures}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, volume = {17}, year = {1983}, pages = {205-220}, mrnumber = {770413}, zbl = {0508.60062}, language = {en}, url = {http://dml.mathdoc.fr/item/SPS_1983__17__205_0} }
Chen, Mu-Fa; Stroock, Daniel W. $\lambda _\pi $-invariant measures. Séminaire de probabilités de Strasbourg, Tome 17 (1983) pp. 205-220. http://gdmltest.u-ga.fr/item/SPS_1983__17__205_0/
[1] Markov Chains with Stationary Transition Probabilities, Springer-Verlag (1967). | MR 217872 | Zbl 0146.38401
[2] A solution to a set of fundamental equations in Markov chains, Proc. Amer. Math. Soc. 5, (1954), 332-334. | MR 60757 | Zbl 0058.34504
[3] Some contributions to the theory of denumerable Markov chains, Trans. Amer. Math. Soc. 39, (1955), 541-555. | MR 70883 | Zbl 0065.11405
[4] Integral representation of excessive measures and excessive functions, Uspehi Mat. Nauk 27 (163), (1972), 43-80. | MR 405602 | Zbl 0321.60002
[5] Minimal excessive measures and functions, Trans. Amer. Math. Soc. 258, (1980), 217-240. | MR 554330 | Zbl 0422.60057
[6] Reversibility of solutions to martingale problems, to appear in Adv. Math. | MR 875449 | Zbl 0613.60066
and[7] Transient Markov chains with stationary measures, Proc. Amer. Math. Soc. 8, (1957), 937-942. | MR 91564 | Zbl 0087.13501
[8] Stationary equations in continuous time Markov chains, Trans. Amer. Math. Soc. 109, (1963), 35-44. | MR 157401 | Zbl 0128.37903
[9] On the spectrum of Markov semigroups and the existence of invariant measures, Functional Analysis in Markov Processes, Proceedings. Edited by M. Fukushima Springer-Verlag, (1981), 287-307. | MR 661631 | Zbl 0484.60059
[10] Multidimensional Diffusion Processes. Springer-Verlag, (1979). | MR 532498 | Zbl 0426.60069
and[11] The necessity of Harris' condition for the existence of a statinary measure, Proc. Amer. Math. Soc. 14, (1863), 856-860. | MR 156379 | Zbl 0126.33902