@article{SPS_1976__10__235_0, author = {Williams, David}, title = {On a stopped brownian motion formula of H. M. Taylor}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, volume = {10}, year = {1976}, pages = {235-239}, mrnumber = {461687}, zbl = {0368.60056}, language = {en}, url = {http://dml.mathdoc.fr/item/SPS_1976__10__235_0} }
Williams, David. On a stopped brownian motion formula of H. M. Taylor. Séminaire de probabilités de Strasbourg, Tome 10 (1976) pp. 235-239. http://gdmltest.u-ga.fr/item/SPS_1976__10__235_0/
[1] Probability. Addison-Wesley, Reading, Mass.. | MR 229267 | Zbl 0174.48801
. (1968).[2] Diffusion processes and their sample paths. Springer, Berlin. | Zbl 0127.09503
and , (1965).[3] Random walks and a sojourn density process of Brownian motion. Trans. Amer. Math. Soc. 109 56-86. | MR 154337 | Zbl 0119.14604
(1963).[4] ---- (1969). Brownian local times and taboo processes. ibid. 143 173-85. | MR 253424 | Zbl 0187.41203
[5] Stochastic integrals. Academic Press, New York. | MR 247684 | Zbl 0191.46603
(1969).[6] ---- (1975). Brownian local times. Advances in Math. 15 91-111. | MR 370793 | Zbl 0309.60054
[7] Sojourn times of diffusion processes. Illinois J. Math. 7 615-30. | MR 156383 | Zbl 0118.13403
, (1963).[8] A stopped Brownian motion formula. Ann. Probability 3 234-246. | MR 375486 | Zbl 0303.60072
(1975).[9] Markov properties of Brownian local time. Bull. Amer. Math. Soc. 75 1035-36. | MR 245095 | Zbl 0266.60060
(1969).[10] ---- (1970). Decomposing the Brownian path. ibid. 76 871-73. | MR 258130 | Zbl 0233.60066
[11] ---- (1974). Path decomposition and continuity of local time for one-dimensional diffusions, I. Proc. London Math. Soc. (3) 28 738-68. | MR 350881 | Zbl 0326.60093