On a stopped brownian motion formula of H. M. Taylor
Williams, David
Séminaire de probabilités de Strasbourg, Tome 10 (1976), p. 235-239 / Harvested from Numdam
@article{SPS_1976__10__235_0,
     author = {Williams, David},
     title = {On a stopped brownian motion formula of H. M. Taylor},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     volume = {10},
     year = {1976},
     pages = {235-239},
     mrnumber = {461687},
     zbl = {0368.60056},
     language = {en},
     url = {http://dml.mathdoc.fr/item/SPS_1976__10__235_0}
}
Williams, David. On a stopped brownian motion formula of H. M. Taylor. Séminaire de probabilités de Strasbourg, Tome 10 (1976) pp. 235-239. http://gdmltest.u-ga.fr/item/SPS_1976__10__235_0/

[1] Breiman, L.. (1968). Probability. Addison-Wesley, Reading, Mass.. | MR 229267 | Zbl 0174.48801

[2] Itô K and Mckean H.P., (1965). Diffusion processes and their sample paths. Springer, Berlin. | Zbl 0127.09503

[3] Knight, F.B. (1963). Random walks and a sojourn density process of Brownian motion. Trans. Amer. Math. Soc. 109 56-86. | MR 154337 | Zbl 0119.14604

[4] ---- (1969). Brownian local times and taboo processes. ibid. 143 173-85. | MR 253424 | Zbl 0187.41203

[5] Mckean, H.P. (1969). Stochastic integrals. Academic Press, New York. | MR 247684 | Zbl 0191.46603

[6] ---- (1975). Brownian local times. Advances in Math. 15 91-111. | MR 370793 | Zbl 0309.60054

[7] Ray D.B., (1963). Sojourn times of diffusion processes. Illinois J. Math. 7 615-30. | MR 156383 | Zbl 0118.13403

[8] Taylor, H.M. (1975). A stopped Brownian motion formula. Ann. Probability 3 234-246. | MR 375486 | Zbl 0303.60072

[9] Williams, D. (1969). Markov properties of Brownian local time. Bull. Amer. Math. Soc. 75 1035-36. | MR 245095 | Zbl 0266.60060

[10] ---- (1970). Decomposing the Brownian path. ibid. 76 871-73. | MR 258130 | Zbl 0233.60066

[11] ---- (1974). Path decomposition and continuity of local time for one-dimensional diffusions, I. Proc. London Math. Soc. (3) 28 738-68. | MR 350881 | Zbl 0326.60093