Une classe d'estimateurs à rétrécisseur bayésiens pour la moyenne d'un vecteur normal
Criticou, Doukissa ; Terzakis, Dimitris
Statistique et analyse des données, Tome 16 (1991), p. 1-23 / Harvested from Numdam
Publié le : 1991-01-01
@article{SAD_1991__16_3_1_0,
     author = {Criticou, Doukissa and Terzakis, Dimitris},
     title = {Une classe d'estimateurs \`a r\'etr\'ecisseur bay\'esiens pour la moyenne d'un vecteur normal},
     journal = {Statistique et analyse des donn\'ees},
     volume = {16},
     year = {1991},
     pages = {1-23},
     mrnumber = {1209837},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/SAD_1991__16_3_1_0}
}
Criticou, Doukissa; Terzakis, Dimitris. Une classe d'estimateurs à rétrécisseur bayésiens pour la moyenne d'un vecteur normal. Statistique et analyse des données, Tome 16 (1991) pp. 1-23. http://gdmltest.u-ga.fr/item/SAD_1991__16_3_1_0/

[1] Alam, K. A family of admissible minimax estimators of the mean of a multivariate normal distribution. Ann. Stat. 1 (3), 517-525, 1973. | MR 353524 | Zbl 0259.62007

[2] Alain, K. Minimax and admissible minimax estimators of the mean of a multivariate normal distribution for unknown covariance matrix. Journal of Multivariate Analysis, 5, 83-95, 1975. | MR 370849 | Zbl 0297.62006

[3] Baranchick, A. Multiple regression and estimation of the mean of a multivariate normal distribution. Techn. Rep. N° 51, Stanford Univ., 1964.

[4] Berger, J.O. Statistical Decision Theory and Bayesian Analysis. 2nd ed. Springer Verlag, New York, 1985. | MR 804611 | Zbl 0444.62009

[5] Criticou, D. Estimateurs à rétrécisseurs (cas de distributions normales) . Une classe d'estimateurs bayésiens. Doctorat, Univ. de Rouen, 1986.

[6] Efron, B. et Morris, C. Limiting the risk of Bayes and empirical Bayes estimators - Part. II : The empirical Bayes case. JASA, vol. 67, n° 337, 1972. | MR 323015 | Zbl 0231.62013

[7] Efron, B. et Morris, C. Stein's estimation rule and its competitors. An empirical Bayes approach. JASA, vol. 68, n° 343, 1973. | MR 388597 | Zbl 0275.62005

[8] Judge, G.G. et Bock, E.M. The Statistical implications of Pre-Test aned Stein-Rule Estimators in Econometrics. North-Holland, 1978. | Zbl 0395.62078

[9] Lin, P.E. et Tsai, H.L. Generalized Bayes minimax estimators of the multivariate normal mean with unknown covariance matrix. Ann. Stat. 1(1), 142-145, 1973. | MR 331573 | Zbl 0254.62006

[10] Lindley, D.V. et Smith, A.-F.M. Bayes Estimates for the Linear Model. J. Royal Statist. Soc. B. 34, 1-42, 1972. | MR 415861 | Zbl 0246.62050

[11] James, W. et Stein, C. Estimation with quadratic loss. Proc. Fourth Berk. Symp. Math. Prob. 1, 361-379, 1961. | MR 133191 | Zbl 1281.62026 | Zbl pre05621494

[12] Roberts, C. An explicit formula for the risk of the positive-part James-Stein estimator. Canadian J. Stat. Paru. 1988. | MR 963730 | Zbl 0649.62004

[13] Spruill, C.M. Some approximate restricted Bayes estimators of a normal mean. Statistics & Decisions 4, 337-351, 1986. | MR 876874 | Zbl 0611.62032

[14] Stein, C. Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. Proc., Third Berk. Symp. 1, 197-206, 1956. | MR 84922 | Zbl 0073.35602

[15] Strawderman, E.W. Proper Bayes minimax estimators of the multivariate normal mean. Ann. Math. Stat. 42 (1), 385-388, 1971. | MR 397939 | Zbl 0222.62006

[16] Strawderman, E.W. Proper Bayes minimax estimatros of the multivariate normal mean vector for the case of common unknown variances. Ann. Stat. 1(6), 1189-1194, 1973. | MR 365806 | Zbl 0286.62007