The Mathematical Beauty of Nature and Turing Pattern Formation
Lacitignola, Deborah
Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana, Tome 1 (2016), p. 93-103 / Harvested from Biblioteca Digitale Italiana di Matematica

Does it really exist a mathematical beauty of nature? And the revolutionary Turing's idea can be a key to decipher it? In this paper we try to answer these questions by describing the origins, the theoretical basis and the scientific impact of Alan Turing's theory on pattern formation. The picture that emerges is that of a highly topical theory, that still fascinates because of its strong interdisciplinary features and for the many advances that it has allowed to obtain in mathematics as well as in chemistry and in biology.

Esiste davvero una bellezza matematica della natura? E la rivoluzionaria idea di Turing può fornire una chiave per decifrarla? In questo articolo si cerca di rispondere a questi interrogativi illustrando la genesi, le basi teoriche e l'impatto scientifico della teoria di Alan Turing sulla "pattern formation". Il quadro che emerge è quello di una teoria ancora di grande attualità, che continua ad affascinare per la sua forte interdisciplinarietà e per i tanti progressi che ha permesso di ottenere sia in ambito matematico che in campo chimico e biologico.

Publié le : 2016-08-01
@article{RUMI_2016_1_1_2_93_0,
     author = {Deborah Lacitignola},
     title = {The Mathematical Beauty of Nature and Turing Pattern Formation},
     journal = {Matematica, Cultura e Societ\`a. Rivista dell'Unione Matematica Italiana},
     volume = {1},
     year = {2016},
     pages = {93-103},
     mrnumber = {3586453},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RUMI_2016_1_1_2_93_0}
}
Lacitignola, Deborah. The Mathematical Beauty of Nature and Turing Pattern Formation. Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana, Tome 1 (2016) pp. 93-103. http://gdmltest.u-ga.fr/item/RUMI_2016_1_1_2_93_0/

[1] Bard, J., Lauder, I., How well does Turing's theory of morphogenesis work?, J. Theor. Biol.45 (1974), 501-531.

[2] Borckmans, P., Dewel, G., De Wit, A., Dulos, E., Boissonade, J., Gauffre, F., De Kepper, P., Diffusive instabilities and chemical reactions, Int. J. Bif. and Chaos12 (2002), 2307-2332. | MR 1955990 | Zbl 1041.92049

[3] Bozzini, B., Lacitignola, D., Mele, C., Sgura, I., Coupling of morphology and chemistry leads to morphogenesis in electrochemical metal growth: a review of the reactiondiffusion approach, Acta Applic. Mathematicae122 (2012), 53-68. | MR 2993981 | Zbl 1256.35176

[4] Bozzini, B., Lacitignola, D., Mele, C., Sgura, I., Morphogenesis in metal electrodeposition, Note di Matem.32 (2012), 7-46. | MR 2986386 | Zbl 1264.78027

[5] Bozzini, B., Lacitignola, D., Sgura, I., Spatio-temporal organisation in alloy electrodeposition: a morphochemical mathematical model and its experimental validation, Journal of Solid State Electrochemistry17 (2013), 467-479. | MR 3255052

[6] Bozzini, B., Gambino, G., Lacitignola, D., Lupo, S., Sammartino, M., Sgura, I., Weakly nonlinear analysis of Turing patterns in a morphochemical model for metal growth, Computers & Mathematics with Applications70 (2015), 1948-1969. | MR 3400498

[7] Breden, M., Lessard, J.P., Vanicat, M., Global bifurcation diagrams of steady states of systems of PDEs via rigorous numerics: a 3-component reaction-diffusion system, Acta Applicandae Mathematicae128 (2013), 113152. | MR 3125637 | Zbl 1277.65088

[8] Bunow, B., Kernevez, J.P., Joly, G., Thomas, D., Pattern formation by reaction-diffusion instabilities: application to morphogenesis in Drosophila, J. Theor. Biol.84 (1980), 629-649. | MR 580762

[9] Callahan, T.K., Knobloch, E., Symmetry-breaking bifurcations on cubic lattices, Nonlinearity10 (1997), 1179. | MR 1473379 | Zbl 0909.58007

[10] Callahan, T.K., Knobloch, E., Pattern formation in three-dimensional reaction-diffusion systems, Physica D132 (1999), 339. | MR 1701288 | Zbl 0935.35065

[11] Claxton, J.H., The determination of patterns with special reference to that of the central primary skin follicles in sheep, J. Theor. Biol.7 (1964), 302-317.

[12] Crampin, E., Gaffney, E.A., Maini, P.K., Reaction and diffusion on growing domains: scenarios for robust pattern formation, Bulletin Mathematical Biology61 (1999), 1093-1120. | Zbl 1323.92028

[13] Castets, V., Dulos, E., Boissonade, J., De Kepper, P., Experimental evidence of a sustained standing Turing type nonequilibrium chemical pattern. Phys. Rev. Lett.64 (1990), 2953.

[14] Crawford, J.D., Introduction to bifurcation theory, Rev. Mod. Phys.63 (1991), 991-1037. | MR 1154113

[15] Cross, M.C., Honenberg, P.C., Pattern formation outside the equilibrium, Reviews in Modern Phys.65 (1993), 851-1112.

[16] Cruywagen, G.C., Maini, P.K., Murray, J.D., Biological pattern formation on two-dimensional spatial domains: a nonlinear bifurcation analysis, SIAM J. Appl. Math.57 (1993), 1485-1509. | MR 1484938 | Zbl 0892.92003

[17] Epstein, I.R., Pojman, J.A., Steinbock, O., Introduction: Self-organization in non equilibrium chemical systems, Chaos16 (2006), 037101. | Zbl 1146.92332

[18] Galilei, G., Il Saggiatore, 1623.

[19] Gambino, G., Lombardo, M.C., Sammartino, M., Turing instability and traveling fronts for a nonlinear reaction-diffusion system with cross-diffusion, Math. Comp. Simul.82 (2012), 1112-1132. | MR 2903351 | Zbl 1320.35170

[20] Gambino, G., Lombardo, M.C., Sammartino, M., Pattern formation driven by cross-diffusion in a 2D domain, Nonlinear Analysis: Real World Applications14 (2013), 1755-1779. | MR 3004535 | Zbl 1270.35088

[21] Garfinkel, A., Tintut, Y., Petrasek, D., Bostrom, K., Demer, L.L., Pattern formation by vascular mesenchymal cells, Proc. Nat. Acad. Sci. USA101 (2004), 9247-9250.

[22] Houchmandzadeh, B., Wieschais, E., Leibler, S., Establishment of developmental precision and proportions in the early Drosophila embryo. Nature415 (2002), 798-802.

[23] Hunding, A., Sorensen, P.G., Size adaptation of Turing prepatterns, J. Math. Biol.26 (1988), 27-39. | MR 929968 | Zbl 0631.92003

[24] Ipsen, M., Hynne, F., Sorensen, P.G., Amplitude equations and chemical reaction-diffusion systems, Int. J. Bifurc. Chaos7 (1997), 1539-1554. | Zbl 0899.92037

[25] Ipsen, M., Hynne, F., Sorensen, P.G., Systematic derivation of amplitude equations and normal forms for dynamical systems, Chaos8 (1998), 834-852. | MR 1662393 | Zbl 0987.37074

[26] Ishihara, S., Kaneko, K., Turing pattern with proportion preservation, J. Theor. Biol.238 (2006), 683-693. | MR 2207257

[27] Jung, H.S., Francis-West, P.H., Widelitz, R.B., Jiang, T.X., Ting-Berreth, S., Tickle, C., Wolpert, L., Chuong, C.M., Local inhibitory action of BMPs and their relationships with activators in feather formation: implications for periodic patterning, Dev. Biol.196 (1998), 11-23.

[28] Kapral, R., Showalter, K., Chemical Waves and Patterns, Kluwer Academic Publishers, 1995.

[29] Kondo, S., Asai, R., A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus, Nature376 (1995), 765-768.

[30] Lacitignola, D., Bozzini, B., Sgura, I., Spatio-temporal organization in a morphochemical electrodeposition model: analysis and numerical simulation of spiral waves, Acta Applicandae Mathematicae132 (2014), 377-389. | MR 3255052 | Zbl 1304.35348

[31] Lacitignola, D., Bozzini, B., Sgura, I., Spatio-temporal organization in a morphochemical electrodeposition model: Hopf and Turing instabilities and their interplay, European Journal of Applied Mathematics26 (2015), 143-173. | MR 3315051

[32] Lee, K.J., Mccormick, W.D., Ouyang, Q., Swinney, H.L., Pattern Formation by Interacting Chemical Fronts, Science, New Series 261 (1993), 192-194.

[33] Leppanen, T., Karttunen, M., Kaski, K., Barrio, R.A., Turing systems as models of complex pattern formation, Braz. J. Phys.34 (2004), 368-372.

[34] Leppanen, T., The Theory of Turing Pattern Formation, in Current Topics in Physics in Honor of Sir Roger Elliot, Imperial College Press, Eds. K. Kaski and R.A. Barrio, 190-227, 2005.

[35] Li, Y.J., Oslonovitch, J., Mazouz, N., Plenge, F., Krischer, K., Ertl, G., Turing-type patterns on electrode surfaces, Science291 (2001), 2395- 2398.

[36] Madzvamuse, A., Gaffney, E.A., Maini, P.K., Stability analysis of reaction-diffusion systems with time-dependent coefficients on growing domains, Journal of Mathematical Biology61 (2010), 133-164. | MR 2643885 | Zbl 1202.92010

[37] Maini, P.K., Crampin, E.J., Madzvamuse, A., Wathen, A.J., Thomas, R.D.K., Implications of domain growth in morphogenesis. In Mathematical Modelling & Computing in Biology and Medicine: 5th ESMTB Conf. 2002, vol. 1, 67-73, 2003. | MR 2093263

[38] Maini, P.K., Using mathematical models to help understand biological pattern formation. Comptes Rendus Biologies327 (2004), 225-234.

[39] Maini, P.K., Woolley, T.E., Baker, R.E., Gaffney, E.A., Seirin Lee, S., Turing's model for biological pattern formation & the robustness problem, J.R. Soc.Interface Focus2 (2012), 487- 496.

[40] Maini, P.K., And Philip K. Maini Wonders at - Turing's Theory of Morphogenesis in Alan Turing: His Work and Impact, 1st Edition, 684-689, edited by S. Barry Cooper, J. Van Leeuwen, 2013. | MR 3324446

[41] Mou, C., Jackson, B., Schneider, P., Overbeek, P.A., Headon, D.J., Generation of the primary hair follicle pattern, Proc. Natl. Acad. Sci. U.S.A.103 (2006), 9075-9080.

[42] Murray, J.D., A pre-pattern formation mechanism for animal coat markings. J. Theor. Biol.88 (1981), 161-199. | MR 610574

[43] Murray, J.D., Mathematical Biology II; Spatial models and biomedical applications, 3rd edition, Springer, 2002. | MR 1952568

[44] Nagorcka, B.N., Mooney, J.R., The role of a reaction-diffusion system in the formation of hair fibres, J. Theor. Biol.98 (1982), 575-607. | MR 684959

[45] Othmer, H.G., Pate, E., Scale-invariance in reaction-diffusion models of spatial pattern formation, Proc. Natl. Acad. Sci.77 (1980), 4180-4184.

[46] Othmer, H.G., Painter, K., Umulis, D., Xue, C., The intersection of theory and application in biological pattern formation, Math. Model. Nat. Phenom.4 (2009), 3-79. | MR 2532425 | Zbl 1181.35297

[47] Ouyang, Q., Swinney, H.L., Transition from a uniform state to hexagonal and striped Turing patterns, Nature352 (1991), 610- 612.

[48] Painter, K.J., Maini, P.K., Othmer, H.G., Stripe forma- tion in Juvenile Pomacanthus explained by a generalized Turing mechanism with chemotaxis, PNAS96 (1999), 5549-5554.

[49] Roth, S., Mathematics and biology: a Kantian view on the history of pattern formation theory, Dev. Genes Evol.221 (2011), 255-279.

[50] Sagués, F., Epstein, I.R., Nonlinear Chemical Dynamics, Dalton Trans. (2003), 1201- 1217.

[51] Sharratt, M., Galileo: Decisive Innovator. Cambridge: Cambridge University Press, 1994. | Zbl 0862.01021

[52] Shvartsman, S.Y., Muratov, C.B., Lauffenburger, D.A., Modeling and computational analysis of EGF receptor-mediated cell communication in Drosophila oogenesis, Development129 (2002), 2577-2589.

[53] Sick, S., Reinker, S., Timmer, J., Schlake, T., WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism, Science314 (2006), 1447-1450.

[54] Thompson, D.W., On Growth and Form, Cambridge University Press, 1917. | MR 6348

[55] Tian, C., Ling, Z., Lin, Z., Turing pattern formation in a predator-prey-mutualist system, Nonlinear Analysis: Real World Applications12 (2011), 3224-3237. | MR 2832962 | Zbl 1231.35275

[56] Turing, A.M., Intelligent machinery, In: The Essential Turing, Oxford University Press, 1948, (reprinted 2004). | MR 1406760

[57] Turing, A.M., Computing machinery and intelligence, Mind59 (1950), 433-460. | MR 37064

[58] Turing, A.M., The chemical bases of morphogenesis, Phil. Trans. Royal Soc. London B237 (1952), 37-72. | MR 3363444

[59] Umulis, D.M., Othmer, H.G., Mechanisms of scaling in pattern formation, Development140 (2013), 4830-4843.

[60] Vanag, V.K., Epstein, I.R., Design and control of patterns in reaction-diffusion systems, Chaos18 (2008), 1-11. | MR 2356983 | Zbl 1163.37381

[61] Vanag, V.K., Epstein, I.R., Pattern formation mechanisms in reaction-diffusion systems, Int. J. Dev. Biol.53 (2009), 673-681.

[62] Varea, C., Aragon, J.L., Barrio, R.A., Confined Turing patterns in growing systems, Phys. Rev. E56 (1997), 1250-1253.

[63] Wang, J., Wei, J., Shi, J., Global bifurcation analysis and pattern formation inhomogeneous diffusive predatorprey systems, J. Differential Equations260 (2016), 3495-3523. | MR 3434407 | Zbl 1332.35176

[64] Wolpert, L., Positional information and the spatial pattern of cellar differentiation, J. Theor. Biol.25 (1969), 1-47.