The mathematics of Kuramoto models which describe synchronization phenomena
Spigler, Renato
Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana, Tome 1 (2016), p. 123-132 / Harvested from Biblioteca Digitale Italiana di Matematica

The so-called "Kuramoto models" and similar ones represent a paradigmatic way to describe a number of synchronization phenomena. These are states into which incoherent systems may go, often as it occurs in phase transition, and concern a variety of cases, ranging form Physics to Neuroscience, from Biology to Engineering and even Social Sciences. They explain, at least qualitatively, a large variety of complex processes. In this paper, we review such models and the underlying mathematics, showing some of their peculiarities.

I cosiddetti "modelli di Kuramoto", e altri simili ad essi, rappresentano un modo paradigmatico per descrivere una serie di fenomeni di sincronizzazione, cioè stati a cui possono passare sistemi incoerenti, come capita spesso nelle transizioni di fase e in una moltitudine di casi, che vanno dalla Fisica alle Neuroscienze, dalla Biologia all'Ingegneria e persino alle Scienze Sociali. Questi fenomeni spiegano, almeno qualitativamente, una grande varietà di processi complessi. In questo articolo, passiamo in rassegna tali modelli e la matematica sottostante, mostrando alcune delle loro peculiarità

Publié le : 2016-08-01
@article{RUMI_2016_1_1_2_123_0,
     author = {Renato Spigler},
     title = {The mathematics of Kuramoto models which describe synchronization phenomena},
     journal = {Matematica, Cultura e Societ\`a. Rivista dell'Unione Matematica Italiana},
     volume = {1},
     year = {2016},
     pages = {123-132},
     mrnumber = {3586455},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RUMI_2016_1_1_2_123_0}
}
Spigler, Renato. The mathematics of Kuramoto models which describe synchronization phenomena. Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana, Tome 1 (2016) pp. 123-132. http://gdmltest.u-ga.fr/item/RUMI_2016_1_1_2_123_0/

[1] Acebrón, J.A., Bonilla, L.L., De Leo, S., and Spigler, R., "Breaking the symmetry in bimodal frequency distributions of globally coupled oscillators", Phys. Rev. E57, May 1998, 5287-5290. | MR 1630298

[2] Acebrón, J.A. and Spigler, R., "Adaptive frequency model for phase-frequency synchronization in large populations of globally coupled nonlinear oscillators", Phys. Rev. Lett. 81, 14 September 1998, 229-2232.

[3] Acebrón, J.A. and Spigler, R., "Uncertainty in phasefrequency synchronization of large populations of globally coupled nonlinear oscillators", Phys. D 141, Nos. 1-2, July 2000, 65-79. | MR 1764169

[4] Acebrón, J.A., Bonilla, L.L., and Spigler, R., "Synchronization in populations of globally coupled oscillators with inertial effects", Phys. Rev. E62, September 2000, 3437-3454. | MR 1788951

[5] Acebrón, J.A., Lavrentiev, M.M., and Spigler, R., "Spectral analysis and computation for the Kuramoto-Sakaguchi integroparabolic equation", IMA J. Numer. Anal.21, no. 1 (2001), 239-263. | MR 1812274 | Zbl 0978.65123

[6] Acebrón, J.A., Bonilla, L.L., Pérez Vicente, C.J., Ritort, F., and Spigler, R., "The Kuramoto model: a simple paradigm for synchronization phenomena", Rev. Modern Phys., 77 (2005), 137-185.

[7] Acebrón, J.A. and Spigler, R., "The TV remote control and beyond: The legacy of Robert Adler", SIAM News, Vol. 40, N. 5, June 2007, pp. 2-3.

[8] Akhmetov, D.R., Lavrentiev, M.M., and Spigler, R., "Nonlinear integroparabolic equations on unbounded domain: Existence of classical solutions with special properties", Siberian Math. J.42 (2001), 495-516. | MR 1852238

[9] Akhmetov, D.R., Lavrentiev, M.M., and Spigler, R., "Regularizing a nonlinear integroparabolic Fokker-Planck equation with space-periodic solutions: Existence of strong solutions", Siberian Math. J.42 (2001), 693-714. | MR 1865474

[10] Akhmetov, D.R., Lavrentiev, M.M., and Spigler, R., "Existence and uniqueness of classical solutions to certain nonlinear integrodifferential Fokker-Planck-type equations", Electron. J. Differential Equations, Vol. 2002 (2002), No. 24, pp. 1-17. | MR 1884993 | Zbl 1011.35068

[11] Akhmetov, D.R. and Spigler, R., "Uniform and optimal estimates for solutions to singularly perturbed parabolic equations", J. Evol. Equ. 7 (2007), 347-372. | MR 2316482 | Zbl 1130.35009

[12] Bonilla, L.L., Spigler, R., and Neu, J.C., "Nonlinear stability of incoherence and collective synchronization in a population of coupled oscillators", J. Statist. Phys.67 (1992), 313-330. | MR 1159468 | Zbl 0925.82176

[13] Bonilla, L.L., Pérez Vicente, C.J., and Spigler, R., "Time-periodic phases in populations of nonlinearly coupled oscillators with bimodal frequency distributions", Phys. D, 113 (1998), 79-97. | MR 1610215 | Zbl 0935.34031

[14] Ermentrout, B., "An adaptive model for synchrony in the firefly Pteroptyx malaccae", J. Math. Biol.29, no. 6 (1991), 571-585. | MR 1118757 | Zbl 0719.92009

[15] Kuramoto, Y., "Self-entrainment of a population of coupled non-linear oscillators", International Symposium on Mathematical Problems in Theoretical Physics (Kyoto Univ., Kyoto, 1975), pp. 420-422. Lecture Notes in Phys., 39, Springer, Berlin, 1975. | MR 676492 | Zbl 0335.34021

[16] Kuramoto, Y., "Chemical Oscillations, Waves and Turbulence", Springer Series in Synergetics, Springer-Verlag, Berlin, 1984. | MR 762432 | Zbl 0558.76051

[17] Lavrentiev, M.M., and Spigler, R., "Existence and uniqueness of solutions to the Kuramoto-Sakaguchi parabolic integrodifferential equation", Differential Integral Equations13 (2000), 649-667. | MR 1750044 | Zbl 0997.35029

[18] Lavrentiev, M.M., and Spigler, R., "Time-independent estimates and a comparison theorem for a nonlinear integroparabolic equation of the Fokker-Planck type", Differential Integral Equations17 (2004), no. 5-6, 549-570. | MR 2054934 | Zbl 1174.35406

[19] Lavrentiev, M.M., Spigler, R., and Tani, A., "Existence, uniqueness, and regularity for the Kuramoto-Sakaguchi equation with unboundedly supported frequency distribution", Differential Integral Equations, 27, No. 9-10 (2014), 879-892. | MR 3229095 | Zbl 1340.35166

[20] Sakaguchi, H., "Cooperative phenomena in coupled oscillator systems under external fields", Progr. Theor. Phys.79, 1 (1988), 39-46. | MR 937229

[21] Sakaguchi, H. and Kuramoto, Y., "A soluble active rotator model showing phase transitions via mutual entreinment", Progr. Theor. Phys. 76, 3 (1986), 576-581. | MR 869973

[22] Sakaguchi, H., Shinimoto, S., and Kuramoto, Y., "Local and global self-entrainment in oscillator lattices", Progr. Theor. Phys.77, 5 (1987), 1005-1010.

[23] Sartoretto, F., Spigler, R., and Pérez Vicente, C.J., "Numerical solution of the Kuramoto-Sakaguchi equation governing populations of coupled oscillators", Math. Models Methods Appl. Sci.8 (1998), 1023-1038. | MR 1646515 | Zbl 0939.65145

[24] Strogatz, S.H., and Mirollo, R., "Stability of incoherence in a population of coupled oscillators", J. Statist. Phys.63, Nos. 3/4 (1991), 613-635. | MR 1115806

[25] Tanaka, H., Lichtenberg, A.J., and Oishi, S., "Selfsynchronization of coupled oscillators with hysteretic responses", Phys. D100 (1997), 279-300. | Zbl 0898.70016

[26] Tanaka, H., Lichtenberg, A.J., and Oishi, S., "First order phase transition resulting from finite inertia in coupled oscillator systems", Phys. Rev. Lett.78, N. 11 (1997), 2104-2107.

[27] Turing, A.M., "The chemical basis of morphogenesis", Philos. Trans. R. Soc. Lond., Series B, Biologcal Sciences, 237, No. 641 (1952), 37-72. | MR 3363444