@article{RSMUP_2015__133__241_0, author = {Alahmadi, Adel and Facchini, Alberto and Khanh Tung, Nguyen}, title = {Automorphism-invariant modules}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, volume = {134}, year = {2015}, pages = {241-260}, mrnumber = {3354953}, language = {en}, url = {http://dml.mathdoc.fr/item/RSMUP_2015__133__241_0} }
Alahmadi, Adel; Facchini, Alberto; Khanh Tung, Nguyen. Automorphism-invariant modules. Rendiconti del Seminario Matematico della Università di Padova, Tome 134 (2015) pp. 241-260. http://gdmltest.u-ga.fr/item/RSMUP_2015__133__241_0/
[1]Rings and Categories of Modules, Second Edition, GTM 13, Springer-Verlag, 1992. | MR 1245487 | Zbl 0765.16001
– ,[2]On the ring of quotients of a boolean ring, Canad. Math. Bull., 2 (1959), pp. 25–29. | MR 101199 | Zbl 0085.26104
– ,[3]Modules which are isomorphic to submodules of each other, Arch. Math., 16 (1965), pp. 184–185. | MR 184973 | Zbl 0138.26702
,[4]On semilocal rings, Israel J. Math., 81 (1993), pp. 203–211. | MR 1231187 | Zbl 0802.16010
– ,[5]A note on pseudo-injective modules, Comm. Algebra, 33 (2005), pp. 361–369. | MR 2124332 | Zbl 1077.16004
,[6]Rings and modules which are stable under automorphisms of their injective hulls, J. Algebra, 379 (2013), pp. 223–229. | MR 3019253 | Zbl 1287.16007
– – ,[7]Module Theory. Endomorphism rings and direct sum decompositions in some classes of modules, Progress in Math. 167, Birkhäuser Verlag, 1998. Reprinted in Modern Birkhäuser Classics, Birkhäuser Verlag, 2010. | MR 1634015 | Zbl 0930.16001
,[8]Local morphisms and modules with a semilocal endomorphism ring, Algebr. Represent. Theory, 9 (2006), pp. 403–422. | MR 2250654 | Zbl 1130.16014
– ,[9]Krieger, Malabar, 1991. | MR 1150975 | Zbl 0749.16001
, ,[10]Additive unit representations in endomorphism rings and an extension of a result of Dickson and Fuller, in: Ring Theory and its Applications, Contemp. Math. 609, Amer. Math. Soc., Providence 2014, D. V. Huynh, et al., eds., pp. 117–121. | MR 3204355 | Zbl 1296.16003
– ,[11]Automorphism-invariant modules satisfy the exchange property, J. Algebra, 388 (2013), pp. 101–106. | MR 3061680 | Zbl 1296.16002
– ,[12]Right self-injective rings in which every element is a sum of two units, J. Algebra Appl., 6 (2007), pp. 281–286. | MR 2316422 | Zbl 1116.16033
– ,[13]Modules which are invariant under automorphisms of their injective hulls, J. Algebra Appl., 12 (2013), 1250159, 9 pp. | MR 3005608 | Zbl 1263.16005
– ,[14]The endomorphism ring of a square-free injective module, Acta Math. Vietnamica 39(3) (2014), Online DOI 10.1007/s40306-014-0075-y. | MR 3412571
,[15]Continuous and Discrete Modules, London Mathematical Society, Lecture Notes Series 147, Cambridge University Press, 1990. | MR 1084376 | Zbl 0701.16001
– ,[16]Lifting idempotents and exchange rings, Trans. Amer. Math. Soc., 229 (1977), pp. 269–278. | MR 439876 | Zbl 0352.16006
,[17]Rings of invariant module type and automorphism-invariant modules, in: Ring Theory and its Applications, Contemp. Math. 609, Amer. Math. Soc., Providence 2014, D. V. Huynh, et al., eds., pp. 299–311. | MR 3204368 | Zbl 1296.16006
– ,[18]Rings of quotients, Springer-Verlag, 1975. | MR 389953 | Zbl 0296.16001
,[19]2-good rings, Quart. J. Math., 56 (2005), pp. 417–430. | MR 2161255 | Zbl 1156.16303
,