@article{RSMUP_2015__133__159_0, author = {Michalska, Ma\l gorzata and Mozgawa, Witold}, title = {$\alpha $-isoptics of a triangle and their connection to $\alpha$-isoptic of an oval}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, volume = {134}, year = {2015}, pages = {159-172}, mrnumber = {3354949}, language = {en}, url = {http://dml.mathdoc.fr/item/RSMUP_2015__133__159_0} }
Michalska, Małgorzata; Mozgawa, Witold. $\alpha $-isoptics of a triangle and their connection to α-isoptic of an oval. Rendiconti del Seminario Matematico della Università di Padova, Tome 134 (2015) pp. 159-172. http://gdmltest.u-ga.fr/item/RSMUP_2015__133__159_0/
[1] On isoptic curves, An. Științ. Univ. Al. I. Cuza Iași Secț. I a Mat., 36 (1990), no. 1, 47–54. | MR 1109793 | Zbl 0725.52002
– – – ,[2] Theorie der konvexen Körper, Chelsea Publ. Comp., New York, 1948. | Zbl 0906.52001
– ,[3] Curves and singularities. A geometrical introduction to singularity theory, Cambridge University Press, Cambridge, 1984. | MR 774048 | Zbl 0534.58008
– ,[4] Isoptics of a closed strictly convex curve, Lect. Notes in Math., 1481 (1991), 28–25. | MR 1178515 | Zbl 0739.53001
– – ,[5] Isoptics of a closed strictly convex curve. II, Rend. Sem. Mat. Univ. Padova, 96 (1996), 37–49. | Numdam | MR 1438287 | Zbl 0881.53003
– – ,[6] Isoptic curves of conic sections in constant curvature geometries, to appear. | MR 3274526
– ,[7] Is a convex plane body determined by an isoptic ?, Beitr. Algebra Geom., 53 (2012), 281–294. | MR 2890383 | Zbl 1235.52005
,[8] A contribution to the light field theory, Beitr. Algebra Geom., 30 (1990), 193–201. | MR 1061015 | Zbl 0679.52004
,[9] A sufficient condition for the convexity of the area of an isoptic curve of an oval, Rend. Sem. Mat. Univ. Padova, 110 (2003), 161–169. | Numdam | MR 2033006 | Zbl 1121.52011
,[10] About a Determinant of Rectangular Matrix and its Geometric Interpretation, Beitr. Algebra Geom., 46 (2005), No. 1, 321–349. | MR 2196920 | Zbl 1090.15009
,[11] “Envelope.” From MathWorld – A Wolfram Web Resource. http://mathworld.wolfram.com/Envelope.html.