@article{RSMUP_2015__133__11_0, author = {Ivorra, Florian}, title = {Mixed Hodge complexes and higher extensions of mixed Hodge modules on algebraic varieties}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, volume = {134}, year = {2015}, pages = {11-78}, mrnumber = {3354943}, language = {en}, url = {http://dml.mathdoc.fr/item/RSMUP_2015__133__11_0} }
Ivorra, Florian. Mixed Hodge complexes and higher extensions of mixed Hodge modules on algebraic varieties. Rendiconti del Seminario Matematico della Università di Padova, Tome 134 (2015) pp. 11-78. http://gdmltest.u-ga.fr/item/RSMUP_2015__133__11_0/
[1] | MR 862628 | Zbl 0621.14011
, Notes on absolute Hodge cohomology, Applications of algebraic K-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983), Contemp. Math., vol. 55, Amer. Math. Soc., Providence, RI, 1986, pp. 35–68. MR MR862628 (87m:14019)[2] Correction to: “Notes on absolute Hodge cohomology” [applications of algebraic K-theory to algebraic geometry and number theory, part i, ii (Boulder, Colo., 1983), 35–68, Amer. Math. Soc., Providence, R.I., 1986; MR0862628 (87m:14019)], K-theory, arithmetic and geometry (Moscow, 1984–1986), Lecture Notes in Math., vol. 1289, Springer, Berlin, 1987, pp. 25–26. MR MR923132 (89a:14023) | MR 923132 | MR 862628 | Zbl 0621.14011
,[3] On the derived category of perverse sheaves, K-theory, arithmetic and geometry (Moscow, 1984–1986), Lecture Notes in Math., vol. 1289, Springer, Berlin, 1987, pp. 27–41. MR MR923133 (89b:14027) | MR 923133 | Zbl 0652.14008
,[4] Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171. MRMR751966 (86g:32015) | MR 751966 | Zbl 0536.14011
, , and ,[5] Théorie de Hodge. III, Inst. Hautes Études Sci. Publ. Math. (1974), no. 44, 5–77. MR 0498552 (58 #16653b) | Numdam | MR 498552 | Zbl 0237.14003
,[6] D-modules, perverse sheaves, and representation theory, Progress in Mathematics, vol. 236, Birkhäuser Boston Inc., Boston, MA, 2008, Translated from the 1995 Japanese edition by Takeuchi. MR 2357361 (2008k:32022) | MR 2357361 | Zbl 1136.14009
, , and ,[7] Realization of Voevodsky’s motives, J. Algebraic Geom. 9 (2000), no. 4, 755–799. MR MR1775312 (2002d:14029) | MR 1775312 | Zbl 0994.14014
,[8] Corrigendum to: “Realization of Voevodsky’s motives”, [J. Algebraic Geom. 9 (2000), no. 4, 755–799], J. Algebraic Geom. 13 (2004), no. 1, 195–207. MR MR2008720 (2004h:14030) | MR 2008720 | MR 1775312 | Zbl 0994.14014
,[9] Mixed Hodge complexes on algebraic varieties and t-structure, Journal of Algebra 433 (2015) 107–167. | MR 3341819
,[10] A study of variation of mixed Hodge structure, Publ. Res. Inst. Math. Sci. 22 (1986), no. 5, 991–1024. MR MR866665 (89i:32050) | MR 866665 | Zbl 0621.14007
,[11] Algebraic study of systems of partial differential equations, Mém. Soc. Math. France (N.S.) (1995), no. 63, xiv+72. MR 1384226 (97f:32012) | Numdam | MR 1384226 | Zbl 0877.35003
,[12] Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer-Verlag, Berlin, 1994, With a chapter in French by Christian Houzel, Corrected reprint of the 1990 original. MR 1299726 (95g:58222) | MR 1074006 | Zbl 0709.18001
and ,[13] Sur la catégorie dérivée des -modules filtrés, Algebraic geometry (Tokyo/Kyoto, 1982), Lecture Notes in Math., vol. 1016, Springer, Berlin, 1983, pp. 151–237. MR MR726427 (85d:32022) | MR 726427 | Zbl 0551.14006
,[14] Mixed motives, Mathematical Surveys and Monographs, vol. 57, American Mathematical Society, Providence, RI, 1998. MR 99i:14025 | MR 1623774 | Zbl 0902.14003
,[15] Le théorème de comparaison pour les cycles évanescents, Éléments de la théorie des systèmes différentiels géométriques, Sémin. Congr., vol. 8, Soc. Math. France, Paris, 2004, pp. 311–389. MR 2077650 (2005k:32032) | MR 2077650 | Zbl 1105.14017
and ,[16] Le théorème de positivité, le théorème de comparaison et le théorème d’existence de Riemann, Éléments de la théorie des systèmes différentiels géométriques, Sémin. Congr., vol. 8, Soc. Math. France, Paris, 2004, pp. 165–310. MR 2077649 (2005h:32020) | MR 2077649 | Zbl 1082.32006
,[17] Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci. 24 (1988), no. 6, 849–995 (1989). MR MR1000123 (90k:32038) | MR 1000123 | Zbl 0691.14007
,[18] Extension of mixed Hodge modules, Compositio Math. 74 (1990), no. 2, 209–234. MR MR1047741 (91f:32046) | Numdam | MR 1047741 | Zbl 0726.14007
,[19] Mixed Hodge modules, Publ. Res. Inst. Math. Sci. 26 (1990), no. 2, 221–333. MR MR1047415 (91m:14014) | MR 1047415 | Zbl 0727.14004
,[20] Mixed Hodge complexes on algebraic varieties, Math. Ann. 316 (2000), no. 2, 283–331. MR MR1741272 (2002h:14012) | MR 1741272 | Zbl 0976.14011
,[21] Variation of mixed Hodge structure. I, Invent. Math. 80 (1985), no. 3, 489–542. MR MR791673 (87h:32050a) | MR 791673 | Zbl 0626.14007
and ,