Lattice graphs with non-concurrent longest cycles
Jumani, Ali Dino ; Zamfirescu, Carol T. ; Zamfirescu, Tudor I.
Rendiconti del Seminario Matematico della Università di Padova, Tome 132 (2014), p. 75-82 / Harvested from Numdam
Publié le : 2014-01-01
@article{RSMUP_2014__132__75_0,
     author = {Jumani, Ali Dino and Zamfirescu, Carol T. and Zamfirescu, Tudor I.},
     title = {Lattice graphs with non-concurrent longest cycles},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     volume = {132},
     year = {2014},
     pages = {75-82},
     mrnumber = {3276827},
     zbl = {06379717},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RSMUP_2014__132__75_0}
}
Jumani, Ali Dino; Zamfirescu, Carol T.; Zamfirescu, Tudor I. Lattice graphs with non-concurrent longest cycles. Rendiconti del Seminario Matematico della Università di Padova, Tome 132 (2014) pp. 75-82. http://gdmltest.u-ga.fr/item/RSMUP_2014__132__75_0/

[1] Y. Bashir - T. Zamfirescu, Lattice graphs with Gallai's property, Bull. Math. Soc. Sci. Math. Roumanie, 56 (2013), pp. 65–71. | MR 3076692 | Zbl 06238113

[2] Y.-C. Chen - C.-H. Tsai - L.-H. Hsu - J. J. M. Tan, On some super fault-tolerant Hamiltonian graphs, Appl. Math. Comput., 148 (2004), pp. 729–741. | MR 2024538 | Zbl 1032.05078

[3] T. Gallai, Problem 4, in: Theory of Graphs Proc. Tihany 1966 (eds.: P. Erdös & G. Katona), Academic Press, New York, 1968, p. 362. | MR 232693

[4] J. P. Hayes, A Graph Model for Fault-Tolerant Computing Systems, IEEE Trans. Comput., 25 (1976), pp. 875–884. | MR 429361 | Zbl 0333.94015

[5] C.-N. Hung - L.-H. Hsu - T.-Y. Sung, On the Construction of Combined k -Fault-Tolerant Hamiltonian Graphs, Networks, 37 (2001), pp. 165–170. | MR 1826840 | Zbl 0974.05051

[6] A. B. Kempe, A Memoir on the Theory of Mathematical Form, Phil. Trans. Roy. Soc. Lond., 177 (1886), pp. 170.

[7] B. Menke, Longest cycles in grid graphs, Studia Sci. Math. Hung., 36 (2000), pp. 201–230. | MR 1768229 | Zbl 0973.05048

[8] B. Menke - Ch. Zamfirescu - T. Zamfirescu, Intersections of longest cycles in grid graphs, J. Graph Theory, 25 (1997), pp. 37–52. | MR 1441977 | Zbl 0874.05032

[9] F. Nadeem - A. Shabbir - T. Zamfirescu, Planar lattice graphs with Gallai's property, Graphs Combin., 29 (2013), pp. 1523–1529. | MR 3091409 | Zbl 1272.05095

[10] J.-H. Park - H.-C. Kim - H.-S. Lim, Fault-hamiltonicity of hypercube-like interconnection networks, Proc. of IEEE International Parallel and Distributed Processing Symposium IPDPS 2005, Denver, Apr. 2005.

[11] J.-H. Park - H.-S. Lim - H.-C. Kim, Panconnectivity and pancyclicity of hypercube-like interconnection networks with faulty elements, Theoret. Comput. Sci., 377 (2007), pp. 170–180. | MR 2323395 | Zbl 1115.68116

[12] J. Petersen, Sur le théorème de Tait, L'Intermdiaire des Mathématiciens, 5 (1898), pp. 225–227.

[13] A. Shabbir - C. T. Zamfirescu - T. I. Zamfirescu, Intersecting longest paths and longest cycles: A survey, Electron. J. Graph Theory Appl., 1 (2013), pp. 56–76. | MR 3093252 | Zbl 06411820

[14] A. Shabbir - T. Zamfirescu, Fault-tolerant designs in triangular lattice networks, submitted.

[15] H. Walther, Über die Nichtexistenz eines Knotenpunktes, durch den alle längsten Wege eines Graphen gehen, J. Combin. Theory, 6 (1969), pp. 16. | MR 236054 | Zbl 0184.27504

[16] T. Yamada - S. Ueno, Fault-tolerant graphs for tori, Networks, 32 (1998), pp. 181–188. | MR 1645407 | Zbl 1015.68009

[17] T. Zamfirescu, A two-connected planar graph without concurrent longest paths, J. Combin. Theory, Ser. B, 13 (1972), pp. 116–121. | MR 316305 | Zbl 0243.05110

[18] T. Zamfirescu, On longest paths and circuits in graphs, Math. Scand., 38 (1976), pp. 211–239. | MR 429645 | Zbl 0337.05127

[19] T. Zamfirescu, Intersecting longest paths or cycles: a short survey, Analele Univ. Craiova, Ser. Mat.-Inf., 28 (2001), pp. 19. | MR 1902030 | Zbl 1059.05502