@article{RSMUP_2014__132__33_0, author = {Jyoti Baishya, Sekhar and Kumar Das, Ashish}, title = {Harmonic numbers and finite groups}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, volume = {132}, year = {2014}, pages = {33-44}, mrnumber = {3276824}, zbl = {06379714}, language = {en}, url = {http://dml.mathdoc.fr/item/RSMUP_2014__132__33_0} }
Jyoti Baishya, Sekhar; Kumar Das, Ashish. Harmonic numbers and finite groups. Rendiconti del Seminario Matematico della Università di Padova, Tome 132 (2014) pp. 33-44. http://gdmltest.u-ga.fr/item/RSMUP_2014__132__33_0/
[1] Numbers whose positive divisors have small integral harmonic mean, Math. Comp., 66 (1997), pp. 883–891. | MR 1397443 | Zbl 0882.11002
,[2] On arithmetic functions of finite groups, Bull. Austral. Math. Soc., 75 (2007), pp. 45–58. | MR 2309547 | Zbl 1126.11003
,[3] On numbers with integral harmonic mean, Amer. Math. Monthly, 61 (1954), pp. 89–96. | MR 59291 | Zbl 0058.27502
,[4] All numbers whose positive divisors have integral harmonic mean up to 300, Math. Comp., 73 (2004), pp. 475–491. | MR 2034133 | Zbl 1094.11005
- ,[5] All harmonic numbers less than , Japan J. Indust. Appl. Math., 24 (2007), pp. 275–288. | MR 2374991 | Zbl 1154.11004
- ,[6] Über das harmonische Mittel der Teiler einer natürlichen Zahl, Math. Ann., 133 (1957), pp. 371–374. | MR 89219 | Zbl 0082.03604
,[7] The theory of finite groups, Springer-Verlag, New York, 2004. | MR 2014408 | Zbl 1047.20011
- ,[8] Perfect numbers and groups, arXiv:math. GR/0104012v1Apr2001.
,[9] Finite groups determined by an inequality of the orders of their subgroups, Bull. Belg. Math. Soc. Simon Stevin, 15 (4) (2008), pp. 699–704. | MR 2475493 | Zbl 1166.20017
- ,[10] Perfect numbers and finite groups, Rend. Sem. Mat. Univ. Padova, 129 (2013), pp. 1733. | Numdam | MR 3090628 | Zbl 1280.20026
- ,[11] On the Averages of the Divisors of a Number, Amer. Math. Monthly, 55 (1948), pp. 615–619. | MR 27292 | Zbl 0031.10903
,[12] The Primitive soluble permutation groups of degree less than 256, Lect. Notes in Maths. 1519, Springer-Verlag, Berlin, 1992. | MR 1176516 | Zbl 0752.20001
,[13] Finite groups determined by an inequality of the orders of their normal subgroups, Sci. An. Univ. Al.I. Cuza Iasi, Math., 57 (2011) pp. 229–238. | MR 2933379 | Zbl 1240.20035
,[14] MathOverflow, http://mathoverflow.net/questions/54851.
[15] The GAP Group, GAP Groups, Algorithms, and Programming, Version 4.6.4, 2013 http://www.gap-system.org).