@article{RSMUP_2014__131__179_0, author = {Sango, Mamadou and Tadmon, Calvin}, title = {On global well-posedness for the Einstein-Maxwell-Euler system in Bondi coordinates}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, volume = {132}, year = {2014}, pages = {179-192}, mrnumber = {3217756}, zbl = {1297.35176}, language = {en}, url = {http://dml.mathdoc.fr/item/RSMUP_2014__131__179_0} }
Sango, Mamadou; Tadmon, Calvin. On global well-posedness for the Einstein-Maxwell-Euler system in Bondi coordinates. Rendiconti del Seminario Matematico della Università di Padova, Tome 132 (2014) pp. 179-192. http://gdmltest.u-ga.fr/item/RSMUP_2014__131__179_0/
[1] Relativistic Hydrodynamics and Magnetohydrodynamics, New York, Benjamin, 1967, 207 pp. | Zbl 0193.55401
[2] Relativity and the Einstein Equations, New York, Oxford University Press, 2009, 812 pp. | MR 2473363 | Zbl 1157.83002
[3] Relativistic fluids and magneto-fluids: With applications in astrophysics and plasma physics, New York, Cambridge University Press, 1989, 348 pp. | Zbl 1106.76003
[4] Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity, Living Rev. Relativity, 11, 2008, No 7, 131 pp. | MR 2033711 | Zbl 1166.83003
[5] On the evolution equations for ideal magnetohydrodynamics in curved spacetime, arXiv:1112.1525, 25 pp. | MR 2989575 | Zbl 1253.83011
, .[6] Exact solution of the relativistic magnetohydrodynamic equations in the background of a plane gravitational wave with combined polarization, Gravit. Cosmol., 17, 2011, No 1, 71–75. | MR 2782443 | Zbl 1232.83023
, .[7] Relativistic magnetohydrodynamics in dynamical spacetimes: Improved electromagnetic gauge condition for adaptative mesh refinement grids, Phys. Rev. D, 85, 2012, No 2, 024013, 10 pp.
et al.[8] Global Existence of Solution to the Coupled Einstein-Maxwell System for a Perfect Charged Relativistic Fluid in a Robertson-Walker Space-Time, Adv. Studies Theor. Phys., 2, 2008, No 15, 725–740. | MR 2447337 | Zbl 1160.83318
, .[9] The formation of black holes in general relativity, Zürich, EMS Monographs in Mathematics, 2009, 600 pp. | MR 2488976 | Zbl 1269.83044
[10] The problem of a self-gravitating scalar field, Comm. Math. Phys., 105, 1986, 337–361. | MR 848643 | Zbl 0608.35039
[11] Global existence of solutions to the coupled Einstein and Maxwell-Higgs system in the spherical symmetry, Ann. Henri Poincaré, 4, 2003, 35–62. | MR 1967171 | Zbl 1025.83007
[12] Global solutions, and their decay properties, of the spherically symmetric Einstein-Yang-Mills-Higgs equations, C. R. Acad. Sci. Paris Ser. I, 349, 2011, 1067–1072. | MR 2843000 | Zbl 1232.35168
[13] On the spherically symmetric Einstein-Yang-Higgs equations in Bondi coordinates, Proc. R. Soc. A, 468, 2012, 3191–3214. | MR 2972377
, .[14] The Goursat problem for the Einstein-Yang-Mills-Higgs system in weighted Sobolev spaces, C. R. Acad. Sci. Paris Ser. I, 348, 2010, 35–39. | MR 2586740 | Zbl 1184.35085
, .[15] The characteristic initial value problem for the Einstein-Yang-Mills-Higgs system in weighted Sobolev spaces, Appl. Math. Res. Express. AMRX 2010, 2010, No 2, 154–231. | MR 2719376 | Zbl 1205.35162
, .[16] Reduction of the characteristic initial value problem to the Cauchy problem and its applications to the Einstein equations, Proc. R. Soc. A, 427, 1990, 221–239. | MR 1032984 | Zbl 0701.35149
[17] Plane symmetric self-gravitating fluids with pressure equal to energy density, Comm. Math. Phys., 29, 1973, 61–77. | MR 321489 | Zbl 0247.76107
, .[18] The characteristic initial value problem for plane symmetric spacetimes with weak regularity, Classical Quantum Gravity, 28, 2011, No 14, 145019, 37 pp. | MR 2822615 | Zbl 1222.83028
.