On global well-posedness for the Einstein-Maxwell-Euler system in Bondi coordinates
Sango, Mamadou ; Tadmon, Calvin
Rendiconti del Seminario Matematico della Università di Padova, Tome 132 (2014), p. 179-192 / Harvested from Numdam
Publié le : 2014-01-01
@article{RSMUP_2014__131__179_0,
     author = {Sango, Mamadou and Tadmon, Calvin},
     title = {On global well-posedness for the Einstein-Maxwell-Euler system in Bondi coordinates},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     volume = {132},
     year = {2014},
     pages = {179-192},
     mrnumber = {3217756},
     zbl = {1297.35176},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RSMUP_2014__131__179_0}
}
Sango, Mamadou; Tadmon, Calvin. On global well-posedness for the Einstein-Maxwell-Euler system in Bondi coordinates. Rendiconti del Seminario Matematico della Università di Padova, Tome 132 (2014) pp. 179-192. http://gdmltest.u-ga.fr/item/RSMUP_2014__131__179_0/

[1] Lichnerowicz A. Relativistic Hydrodynamics and Magnetohydrodynamics, New York, Benjamin, 1967, 207 pp. | Zbl 0193.55401

[2] Choquet-Bruhat Y. General Relativity and the Einstein Equations, New York, Oxford University Press, 2009, 812 pp. | MR 2473363 | Zbl 1157.83002

[3] Anile A. M. Relativistic fluids and magneto-fluids: With applications in astrophysics and plasma physics, New York, Cambridge University Press, 1989, 348 pp. | Zbl 1106.76003

[4] Font J. A. Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity, Living Rev. Relativity, 11, 2008, No 7, 131 pp. | MR 2033711 | Zbl 1166.83003

[5] Pugliese D., J. A. Valiente Kroon. On the evolution equations for ideal magnetohydrodynamics in curved spacetime, arXiv:1112.1525, 25 pp. | MR 2989575 | Zbl 1253.83011

[6] Agathonov A. A., Y. G. Ignatyev. Exact solution of the relativistic magnetohydrodynamic equations in the background of a plane gravitational wave with combined polarization, Gravit. Cosmol., 17, 2011, No 1, 71–75. | MR 2782443 | Zbl 1232.83023

[7] Etienne Z. B. et al. Relativistic magnetohydrodynamics in dynamical spacetimes: Improved electromagnetic gauge condition for adaptative mesh refinement grids, Phys. Rev. D, 85, 2012, No 2, 024013, 10 pp.

[8] Noutchegueme N., C. Nangne. Global Existence of Solution to the Coupled Einstein-Maxwell System for a Perfect Charged Relativistic Fluid in a Robertson-Walker Space-Time, Adv. Studies Theor. Phys., 2, 2008, No 15, 725–740. | MR 2447337 | Zbl 1160.83318

[9] Christodoulou D. The formation of black holes in general relativity, Zürich, EMS Monographs in Mathematics, 2009, 600 pp. | MR 2488976 | Zbl 1269.83044

[10] Christodoulou D. The problem of a self-gravitating scalar field, Comm. Math. Phys., 105, 1986, 337–361. | MR 848643 | Zbl 0608.35039

[11] Chae D. Global existence of solutions to the coupled Einstein and Maxwell-Higgs system in the spherical symmetry, Ann. Henri Poincaré, 4, 2003, 35–62. | MR 1967171 | Zbl 1025.83007

[12] Tadmon C. Global solutions, and their decay properties, of the spherically symmetric su(2)- Einstein-Yang-Mills-Higgs equations, C. R. Acad. Sci. Paris Ser. I, 349, 2011, 1067–1072. | MR 2843000 | Zbl 1232.35168

[13] Tadmon C., S. B. Tchapnda. On the spherically symmetric Einstein-Yang-Higgs equations in Bondi coordinates, Proc. R. Soc. A, 468, 2012, 3191–3214. | MR 2972377

[14] Dossa M., C. Tadmon. The Goursat problem for the Einstein-Yang-Mills-Higgs system in weighted Sobolev spaces, C. R. Acad. Sci. Paris Ser. I, 348, 2010, 35–39. | MR 2586740 | Zbl 1184.35085

[15] Dossa M., C. Tadmon. The characteristic initial value problem for the Einstein-Yang-Mills-Higgs system in weighted Sobolev spaces, Appl. Math. Res. Express. AMRX 2010, 2010, No 2, 154–231. | MR 2719376 | Zbl 1205.35162

[16] Rendall A. D. Reduction of the characteristic initial value problem to the Cauchy problem and its applications to the Einstein equations, Proc. R. Soc. A, 427, 1990, 221–239. | MR 1032984 | Zbl 0701.35149

[17] Tabensky R., A. H. Taub. Plane symmetric self-gravitating fluids with pressure equal to energy density, Comm. Math. Phys., 29, 1973, 61–77. | MR 321489 | Zbl 0247.76107

[18] P. G. Lefloch, J. M. Stewart. The characteristic initial value problem for plane symmetric spacetimes with weak regularity, Classical Quantum Gravity, 28, 2011, No 14, 145019, 37 pp. | MR 2822615 | Zbl 1222.83028