When all reduced strongly flat modules are projective
Fuchs, László ; Bum Lee, Sang
Rendiconti del Seminario Matematico della Università di Padova, Tome 132 (2014), p. 15-22 / Harvested from Numdam
Publié le : 2014-01-01
@article{RSMUP_2014__131__15_0,
     author = {Fuchs, L\'aszl\'o and Bum Lee, Sang},
     title = {When all reduced strongly flat modules are projective},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     volume = {132},
     year = {2014},
     pages = {15-22},
     mrnumber = {3217748},
     zbl = {06329755},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RSMUP_2014__131__15_0}
}
Fuchs, László; Bum Lee, Sang. When all reduced strongly flat modules are projective. Rendiconti del Seminario Matematico della Università di Padova, Tome 132 (2014) pp. 15-22. http://gdmltest.u-ga.fr/item/RSMUP_2014__131__15_0/

[1] H. Bass, Finitistic dimension and a homological generalization of semiprimary rings, Trans. Amer. Math. Soc. 95 (1960), 466–488. | MR 157984 | Zbl 0094.02201

[2] S. Bazzoni and L. Salce, Almost perfect domains, Coll. Math. 95(2003), 285–301. | MR 1968387 | Zbl 1048.13014

[3] L. Fuchs and R. Göbel, Testing for cotorsionness over domains, Rendiconti Sem. Mat. Univ. Padova 118 (2007), 85–99. | Numdam | MR 2378391 | Zbl 1167.13303

[4] L. Fuchs and L. Salce, Modules over non-Noetherian Domains, Math. Surveys and Monographs, vol. 84 (Amer. Math. Society, Providence, 2001). | MR 1794715 | Zbl 0973.13001

[5] R. Göbel and W. May, Independence in completions and endomorphism algebras, Forum Math. 1 (1989), 215–226. | MR 1005423 | Zbl 0691.13004

[6] R. Göbel and J. Trlifaj, Approximations and Endomorphism Algebras of Modules, Expositions in Math., vol. 41 (W. de Gruyter, 2006). | Zbl 1121.16002

[7] S.B. Lee, Strongly flat modules over Matlis domains (submitted).

[8] E. Matlis, Cotorsion modules, Memoirs Amer. Math. Soc. 49 (1964). | MR 178025 | Zbl 0135.07801