@article{RSMUP_2013__130__203_0, author = {Sosna, Pawel}, title = {Fourier-Mukai partners of canonical covers of bielliptic and Enriques surfaces}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, volume = {130}, year = {2013}, pages = {203-214}, mrnumber = {3148638}, language = {en}, url = {http://dml.mathdoc.fr/item/RSMUP_2013__130__203_0} }
Sosna, Pawel. Fourier-Mukai partners of canonical covers of bielliptic and Enriques surfaces. Rendiconti del Seminario Matematico della Università di Padova, Tome 130 (2013) pp. 203-214. http://gdmltest.u-ga.fr/item/RSMUP_2013__130__203_0/
[1] Compact complex surfaces, Springer, Berlin (2004). | MR 2030225 | Zbl 1036.14016
- - - ,[2] Stability conditions on K3 surfaces, Duke Math. J. 141 (2008), pp. 241-291. | MR 2376815 | Zbl 1138.14022
,[3] Complex surfaces with equivalent derived categories, Math. Z. 236 (2001), pp. 677-697. | MR 1827500 | Zbl 1081.14023
- ,[4] Sphere packings, lattices and groups, 3rd ed., Springer, New York, 1999. | MR 1662447 | Zbl 0915.52003
- ,[5] Kummer structures on a K3 surface: An old question of T. Shioda, Duke Math. J. 120 (2003), pp. 635-647. | MR 2030099 | Zbl 1051.14046
- - - ,[6] Fourier-Mukai numbers of a K3 surface, In: Algebraic structures and moduli spaces, pp. 177-192. Amer. Math. Soc., Providence, RI (2004). | MR 2096145 | Zbl 1076.14045
- - - ,[7] Equivalences of twisted K3 surfaces, Math. Ann. 332 (2005), pp. 901-936. | MR 2179782 | Zbl 1092.14047
- ,[8] Every algebraic Kummer surface is the K3-cover of an Enriques surface, Nagoya Math. J. 118 (1990), pp. 99-110. | MR 1060704 | Zbl 0699.14047
,[9] Twisted Fourier-Mukai number of a K3 surface, Trans. Amer. Math. Soc. 362 (2010), pp. 537-552. | MR 2550163 | Zbl 1184.14068
,[10] E. Macr - S. Mehrotra - P. Stellari, Inducing stability conditions, J. Alg. Geom. 18 (2009), pp. 605-649. | MR 2524593
[11] Duality between D( ) and D( ) and its application to Picard sheaves, Nagoya Math. J. 81 (1981), pp. 153-175. | MR 607081
,[12] On the moduli space of bundles on K3 surfaces, I, in: Vector bundles on algebraic varieties (Bombay, 1984), pp. 341-413, Tata Inst. Fund. Res., Bombay (1987). | MR 893604
,[13] Periods of Enriques surfaces, Math. Ann. 270 (1985), pp. 201-222. | MR 771979
,[14] Integral symmetric bilinear forms and some of their applications, Math. USSR Izv. 14 (1980), pp. 103-167. | MR 525944
,[15] Enriques manifolds, J. Reine Angew. Math. (to appear). | MR 2863907
- ,[16] On the number of Enriques quotients of a K3 surface, Publ. Res. Inst. Math. Sci. 43 (2007), pp. 181-200. | MR 2319542
,[17] Equivalences of derived categories and K3 surfaces, J. Math. Sci. 84 (1997), pp. 1361-1381. | MR 1465519
,[18] Derived categories of coherent sheaves on abelian varieties and equivalences between them, Izv. Math. 66 (2002), pp. 569-594. | MR 1921811
,[19] Equivariant autoequivalences for finite group actions, Adv. Math. 216 (2007), pp. 62-74. | MR 2353249
,[20] Some remarks on abelian varieties, J. Fac. Sci. Univ. Tokyo Sect. IA 24 (1977), pp. 11-21. | MR 450289
,[21] The period map of abelian surfaces, J. Fac. Sci. Univ. Tokyo Sect. IA 25 (1977), pp. 47-59. | MR 480530
,[22] Singular abelian surfaces and binary quadratic forms, In: Classification of algebraic varieties and compact complex manifolds, Springer, Berlin (1974), pp. 259-287. | MR 382289
- ,[23] Derived categories and Kummer varieties, Math. Z. 256 (2007), pp. 425-441. | MR 2289881
,