@article{RSMUP_2013__129__35_0, author = {Patassini, Massimiliano}, title = {On the (non-)contractibility of the order complex of the coset poset of an alternating group}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, volume = {130}, year = {2013}, pages = {35-46}, mrnumber = {3090629}, zbl = {1281.20027}, language = {en}, url = {http://dml.mathdoc.fr/item/RSMUP_2013__129__35_0} }
Patassini, Massimiliano. On the (non-)contractibility of the order complex of the coset poset of an alternating group. Rendiconti del Seminario Matematico della Università di Padova, Tome 130 (2013) pp. 35-46. http://gdmltest.u-ga.fr/item/RSMUP_2013__129__35_0/
[1] A probabilistic generalization of the Riemann zeta function, Analytic Number Theory, 1 (1996), pp. 155-162. | MR 1399336
,[2] The coset poset and the probabilistic zeta function of a finite group, J. Algebra, 225 (2000), pp. 989-1012. | MR 1741574
,[3] Crowns and factorization of the probabilistic zeta function of a finite group, J. Algebra, 265 (2003), pp. 651-668. | MR 1987022
- ,[4] Zu einem von B. H. und H. Neumann gestellten Problem, Math. Nachr., 14 (1955), pp. 249-252. | MR 83993
,[5] On the Möbius function of a finite group, Rocky Mountain Journal, 19 (1989), pp. 1003-1034. | MR 1039540
- - ,[6] Positively finitely generated groups, Forum Math., 8 (1996), pp. 429-459. | MR 1393323
,[7] The Probabilistic Zeta function of , of the Suzuki groups and of the Ree groups , Pacific J. Math., 240 (2009), pp. 185-200. | MR 2485479
,[8] On the Dirichlet polynomial of the simple group of Lie type, Università di Padova, 2011, http://paduaresearch.cab.unipd.it/3272/1/Phd_Thesis.pdf,
,[9] On the (non-)contractibility of the order complex of the coset poset of a classical group, J. Algebra, 343 (2011), pp. 37-77. | MR 2824544
,[10] Recognizing the non-Frattini abelian chief factors of a finite group from its Probabilistic Zeta function, Accepted by Comm. Algeb., 2011. | MR 2989660
,[11] Coefficient of the Probabilistic Zeta function of a monolithic group, Glasgow J. Math., 50 (2008), pp. 75-81. | MR 2381734
,