Loading [MathJax]/extensions/MathZoom.js
Perfect numbers and finite groups
De Medts, Tom ; Maróti, Attila
Rendiconti del Seminario Matematico della Università di Padova, Tome 130 (2013), p. 17-34 / Harvested from Numdam
@article{RSMUP_2013__129__17_0,
     author = {De Medts, Tom and Mar\'oti, Attila},
     title = {Perfect numbers and finite groups},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     volume = {130},
     year = {2013},
     pages = {17-34},
     mrnumber = {3090628},
     zbl = {1280.20026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RSMUP_2013__129__17_0}
}
De Medts, Tom; Maróti, Attila. Perfect numbers and finite groups. Rendiconti del Seminario Matematico della Università di Padova, Tome 130 (2013) pp. 17-34. http://gdmltest.u-ga.fr/item/RSMUP_2013__129__17_0/

[1] C. W. Anderson, The solution of Σ(n)=σ(n)/n=a/b , Φ(n)=ϕ(n)/n=a/b and some related considerations, unpublished manuscript (1974).

[2] T. De Medts, Recovering n from σ(n)/n , MathOverflow, http://mathoverflow.net/questions/56376.

[3] T. De Medts - M. Tărnăuceanu, Finite groups determined by an inequality of the orders of their subgroups, Bull. Belg. Math. Soc. Simon Stevin 15, no. 4 (2008), pp. 699-704. | MR 2475493

[4] B. Huppert, Endliche Gruppen I, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin, New York, 1967. | MR 224703

[5] T. Leinster, Perfect numbers and groups, arXiv:math/0104012.

[6] T. Leinster, Is there an odd-order group whose order is the sum of the orders of the proper normal subgroups?, Math. Overflow, http://mathoverflow.net/questions/54851.

[7] W. A. Stein et. al., Sage Mathematics Software (Version 4.6.1), The Sage Development Team, 2011, http://www.sagemath.org.

[8] W. G. Stanton - J. A. Holdener, Abundancy outlaws of the form (σ(N)+t)/N , J. Integer Sequences 10 (2007), Article 09.7.6. | MR 2346095

[9] http://java.ugent.be/~tdemedts/leinster.