Quadratic integral solutions to double Pell equations
Veneziano, Francesco
Rendiconti del Seminario Matematico della Università di Padova, Tome 126 (2011), p. 47-61 / Harvested from Numdam
Publié le : 2011-01-01
@article{RSMUP_2011__126__47_0,
     author = {Veneziano, Francesco},
     title = {Quadratic integral solutions to double Pell equations},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     volume = {126},
     year = {2011},
     pages = {47-61},
     mrnumber = {2918198},
     zbl = {1273.11056},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RSMUP_2011__126__47_0}
}
Veneziano, Francesco. Quadratic integral solutions to double Pell equations. Rendiconti del Seminario Matematico della Università di Padova, Tome 126 (2011) pp. 47-61. http://gdmltest.u-ga.fr/item/RSMUP_2011__126__47_0/

[AH91] D. Abramovich - J. Harris, Abelian varieties and curves in W d (C) , Compositio Math., 78, 2 (1991), pp. 227-238. | Numdam | MR 1104789 | Zbl 0748.14010

[CZ03] P. Corvaja - U. Zannier, On the number of integral points on algebraic curves, J. Reine Angew. Math., 565 (2003), pp. 27-42. | MR 2024644 | Zbl 1153.11315

[CZ04] P. Corvaja - U. Zannier, On integral points on surfaces, Ann. of Math. (2), 160, 2 (2004), pp. 705-726. | MR 2123936 | Zbl 1146.11035

[DF93] O. Debarre - R. Fahlaoui, Abelian varieties in W d r (C) and points of bounded degree on algebraic curves, Compositio Math., 88, 3 (1993), pp. 235-249. | Numdam | MR 1241949 | Zbl 0808.14025

[EE93] Edited by B. Edixhoven - J.-H. Evertse, Diophantine approximation and abelian varieties, Lecture Notes in Mathematics, vol. 1566, Springer-Verlag, Berlin (1993), Introductory lectures, Papers from the conference held in Soesterberg, April 12-16, 1992. | MR 1288998 | Zbl 0811.14019

[Eve95] J.-H. Evertse, The number of solutions of decomposable form equations, Invent. Math., 122, 3 (1995), pp. 559-601. | MR 1359604 | Zbl 0851.11019

[HS91] J. Harris - J. Silverman, Bielliptic curves and symmetric products, Proc. Amer. Math. Soc., 112, 2 (1991), pp. 347-356. | MR 1055774 | Zbl 0727.11023

[Mah35] K. Mahler, On the lattice points on curves of genus 1, Proc. London Math. Soc., 39 (1935), pp. 431-466. | JFM 61.0146.02

[Mor69] L. J. Mordell, Diophantine equations, Pure and Applied Mathematics, Vol. 30, Academic Press, London (1969). | MR 249355 | Zbl 0188.34503

[NW02] J. Noguchi - J. Winkelmann, Holomorphic curves and integral points off divisors, Math. Z., 239, 3 (2002), pp. 593-610. | MR 1893854 | Zbl 1011.32012

[Ser88] J.-P. Serre, Algebraic groups and class fields, Graduate Texts in Mathematics, vol. 117, Springer-Verlag, New York (1988), Translated from the French. | MR 918564 | Zbl 0703.14001

[Sil83] J. H. Silverman, Integer points on curves of genus 1 , J. London Math. Soc. (2), 28, 1 (1983), pp. 1-7. | MR 703458 | Zbl 0487.10015

[Voj87] P. Vojta, Diophantine approximations and value distribution theory, Lecture Notes in Mathematics, vol. 1239, Springer-Verlag, Berlin (1987). | MR 883451 | Zbl 0609.14011

[Voj91] P. Vojta, Arithmetic discriminants and quadratic points on curves, Arithmetic algebraic geometry (Texel, 1989), Progr. Math., vol. 89, Birkhäuser Boston, Boston, MA (1991), pp. 359-376. | MR 1085268 | Zbl 0749.14018

[Voj92] P. Vojta, A generalization of theorems of Faltings and Thue-Siegel-Roth-Wirsing, J. Amer. Math. Soc., 5, 4 (1992), pp. 763-804. | MR 1151542 | Zbl 0778.11037

[Voj96] P. Vojta, Integral points on subvarieties of semiabelian varieties. I, Invent. Math., 126, 1 (1996), pp. 133-181. | MR 1408559 | Zbl 1011.11040

[Wei07] A. Weil, Number theory, Modern Birkhäuser Classics, Birkhäuser Boston Inc., Boston, MA (2007), An approach through history from Hammurapi to Legendre, Reprint of the 1984 edition. | MR 734177 | Zbl 1149.01013