@article{RSMUP_2010__124__91_0, author = {Granieri, Luca}, title = {Metric currents and geometry of Wasserstein spaces}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, volume = {124}, year = {2010}, pages = {91-125}, mrnumber = {2752678}, zbl = {1210.35076}, language = {en}, url = {http://dml.mathdoc.fr/item/RSMUP_2010__124__91_0} }
Granieri, Luca. Metric currents and geometry of Wasserstein spaces. Rendiconti del Seminario Matematico della Università di Padova, Tome 124 (2010) pp. 91-125. http://gdmltest.u-ga.fr/item/RSMUP_2010__124__91_0/
[1] Lecture Notes on Transport Problems, in "Mathematical Aspects of Evolving Interfaces". Lecture Notes in Mathematics, 1812 (Springer, Berlin, 2003), pp. 1--52. | MR 2011032 | Zbl 1047.35001
,[2] Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zurich, Birkhauser Verlag, Basel, 2005. | MR 2129498 | Zbl 1145.35001
- - ,[3] Currents in Metric Spaces, Acta Mathematica, 185, no. 1 (2000), pp. 1--80. | MR 1794185 | Zbl 0984.49025
- ,[4] Topics on Analysis in Metric Spaces, Oxford Lectures Series in Mathematics and its Applications, 25, Oxford University Press, Oxford, 2004. | MR 2039660 | Zbl 1080.28001
- ,[5] Minimal measures and minimizing closed normal one-currents, GAFA Geom. Funct. Anal., 9, no. 3 (1999), pp. 413--427. | MR 1708452 | Zbl 0973.58004
,[6] Characterization of optimal shapes and masses through Monge-Kantorovich equation, Journal European Math. Soc., 3 (2001), pp. 139--168. | MR 1831873 | Zbl 0982.49025
- ,[7] Extended Monge-Kantorovich Theory, in Optimal Transportation and Applications, Lecture Notes in Mathematics, 1813 (Springer, Berlin, 2003), pp. 91--121. | MR 2006306 | Zbl 1064.49036
,[8] A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math., 84, no. 3 (2000), pp. 375--393. | MR 1738163 | Zbl 0968.76069
- ,[9] Optimal mass transportation and Mather theory, J. Eur. Math. Soc. (JEMS), 9, no. 1 (2007), pp. 85--121. | MR 2283105 | Zbl pre05129006
- ,[10] Global Minimizers of Autonomous Lagrangians. IMPA, Rio de Janeiro, 1999. | MR 1720372 | Zbl 0957.37065
- ,[11] Minimal measures, one-dimensional currents and the Monge-Kantorovich problem, Calc. Var., 27, no. 1 (2006), pp. 1--23. | MR 2241304 | Zbl 1096.37033
- - ,[12] Direct Methods in the Calculus of Variations, second edition, Springer, 2008. | MR 2361288 | Zbl 0703.49001
,[13] Partial differential equations and Monge-Kantorovich mass transfer (survey paper), Current Developments in Mathematics, 1997, International Press (1999), edited by S. T. Yau. | MR 1698853 | Zbl 0954.35011
,[14] Algebraic Topology. Springer, 1995. | MR 1343250 | Zbl 0852.55001
,[15] Geometric Measure Theory. Springer (Berlin), 1969. | MR 257325 | Zbl 0874.49001
,[16] Differential forms on Wasserstein space and infinite-dimensional Hamiltonian systems, forthcoming on Memoirs AMS. | Zbl 1221.53001
- - ,[17] The geometry of optimal transportation, Acta Math., 177 (1996), pp. 113--161. | MR 1440931 | Zbl 0887.49017
- ,[18] Cartesian currents in the calculus of variations. I. Cartesian currents. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics 37. Springer-Verlag, Berlin, 1998. | MR 1645086 | Zbl 0914.49001
- - ,[19] On action minimizing measures for the Monge-Kantorovich problem, NoDEA 14 (2007), pp. 125--152. | MR 2346457 | Zbl 1133.37027
,[20] Mass Transportation Problems and Minimal Measures. Ph.D. Thesis in Mathematics, Pisa, 2005.
,[21] Geometric study of Wasserstein spaces: Euclidean spaces, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze IX, 2 (2010), pp. 297--323. | Numdam | MR 2731158 | Zbl 1218.53079 | Zbl pre05791997
,[22] The variational formulation of the Fokker-Plank equation, Siam J. Math. Anal., 29 (1998), pp. 1--17. | MR 1617171 | Zbl 0915.35120
- - ,[23] Riemannian Geometry and Geometric Analysis. Springer, 2002. | MR 1871261 | Zbl 1034.53001
,[24] Nonpositive Curvature: Geometric and Analytic Aspects. Lectures in Math. ETH Zurich, Birkhauser Verlag, Basel, 1997. | MR 1451625 | Zbl 0896.53002
,[25] Kirszbraun's theorem and metric spaces of bounded curvature, GAFA Geom. Funct. Anal., 7 (1997), pp. 535--560. | MR 1466337 | Zbl 0891.53046
- ,[26] The geometry of dissipative evolution equations: the porus medium equation, Comm. Partial Differential Equations 26, no. 1-2 (2001), pp. 101--174. | MR 1842429 | Zbl 0984.35089
,[27] Stochastics and Analysis on Metric Spaces, lecture notes in preparation.
,[28] Metric spaces of lower bounded curvature, Exposition. Math., 17, no. 1 (1999), pp. 35--47. | MR 1687468 | Zbl 0983.53025
,[29] Probability Measures on Metric Spaces of Nonpositive Curvature, Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002), pp. 357--390, Contemp. Math., 338, AMS, Providence, RI, 2003. | MR 2039961 | Zbl 1040.60002
,[30] On the geometry of metric measure spaces. I, Acta Math., 196, no.1 (2006), pp. 65--131. | MR 2237206 | Zbl 1105.53035
,[31] Topics in Mass Transportation. Graduate Studies in mathematics, 58, AMS, Providence, RI, 2003. | MR 1964483 | Zbl 1106.90001
,[32] Optimal Transport, Old and New. Springer, 2009. | MR 2459454 | Zbl 1156.53003
,[33] Isoperimetric inequalities of euclidean type in metric spaces, GAFA, Geom. funct. anal., Vol. 15 (2005), pp. 534--554. | MR 2153909 | Zbl 1084.53037
,[34] Flat convergence for integral currents in metric spaces, Calc. Var., 28 (2007), pp. 139--160. | MR 2284563 | Zbl 1110.53030
,