GIT quotients of products of projective planes
Incensi, Francesca
Rendiconti del Seminario Matematico della Università di Padova, Tome 124 (2010), p. 1-36 / Harvested from Numdam
Publié le : 2010-01-01
@article{RSMUP_2010__123__1_0,
     author = {Incensi, Francesca},
     title = {GIT quotients of products of projective planes},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     volume = {124},
     year = {2010},
     pages = {1-36},
     mrnumber = {2683289},
     zbl = {1200.14094},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RSMUP_2010__123__1_0}
}
Incensi, Francesca. GIT quotients of products of projective planes. Rendiconti del Seminario Matematico della Università di Padova, Tome 124 (2010) pp. 1-36. http://gdmltest.u-ga.fr/item/RSMUP_2010__123__1_0/

[1] D. Cox, The homogeneous coordinate ring of a toric variety, J. Alg. Geom., 4 (1995), pp. 17--50. | MR 1299003 | Zbl 0846.14032

[2] D. Cox, Toric variety and Toric resolutions, Resolution of Singularities (H. Hauser, J. Lipman, F. Oort, A. Quiros, eds), Birkhäuser (Basel-Boston-Berlin, 2000), pp. 259--284. | MR 1748623 | Zbl 0969.14035

[3] I. V. Dolgachev, Lectures on Invariant Theory, Cambridge University Press, Lecture Note Series 296, 2003. | MR 2004511 | Zbl 1023.13006

[4] I. V. Dolgachev - Y. Hu, Variations of geometric invariant theory quotients, Publ. Math. IHES, 87 (1998), pp. 5--51. | Numdam | MR 1659282 | Zbl 1001.14018

[5] J. M. Drézet, Luna's Slice Theorem, Notes for a course in Algebraic group actions and quotients at Wykno (Poland, Sept. 3-10, 2000).

[6] W. Fulton, Introduction to Toric Varieties, Princeton Univ. Press, 1993. | MR 1234037 | Zbl 0813.14039

[7] R. Hartshorne, Algebraic Geometry, Springer-Verlag, GTM 52 (1977). | MR 463157 | Zbl 0367.14001

[8] F. Incensi, Quozienti GIT di prodotti di spazi proiettivi, PhD Thesis (2006).

[9] D. Luna, Slices Ètales, Mém. Bull. Soc. Math de France, 33 (1973), pp. 81--105. | Numdam | MR 342523 | Zbl 0286.14014

[10] D. Mumford - J. Fogarty - F. Kirwan, Geometric Invariant Theory, Springer-Verlag, 1994. | MR 1304906 | Zbl 0797.14004

[11] M. Thaddeus, Geometric invariant theory and flips, Jour. Amer. Math. Soc., 9 (1996), pp. 691--723. | MR 1333296 | Zbl 0874.14042

[12] C. Walter, Variation of quotients and étale slices in geometric invariant theory, Notes for a course in Algebra and Geometry at Dyrkolbotn, Norway (Dec. 4-9, 1995).