Fair-sized projective modules
Příhoda, Pavel
Rendiconti del Seminario Matematico della Università di Padova, Tome 124 (2010), p. 141-168 / Harvested from Numdam
Publié le : 2010-01-01
@article{RSMUP_2010__123__141_0,
     author = {P\v r\'\i hoda, Pavel},
     title = {Fair-sized projective modules},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     volume = {124},
     year = {2010},
     pages = {141-168},
     mrnumber = {2683295},
     zbl = {pre05780248},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RSMUP_2010__123__141_0}
}
Příhoda, Pavel. Fair-sized projective modules. Rendiconti del Seminario Matematico della Università di Padova, Tome 124 (2010) pp. 141-168. http://gdmltest.u-ga.fr/item/RSMUP_2010__123__141_0/

[1] T. Akasaki, Idempotent ideals of integral group rings, J. Algebra, 23 (1972), pp. 343--346. | MR 304420 | Zbl 0243.16007

[2] F. W. Anderson - K. R. Fuller, Rings and categories of modules, Springer - Verlag, 1974. | MR 417223 | Zbl 0765.16001

[3] H. Bass, Big projective modules are free, Illinois J. Math. (1963), pp. 24--31. | MR 143789 | Zbl 0115.26003

[4] R. Camps - W. Dicks, On semilocal rings, Israel J. Math., 81 (1993), pp. 203--211. | MR 1231187 | Zbl 0802.16010

[5] C. W. Curtis - I. Reiner, Methods of representation theory with applications to finite groups and orders, Vol. 1, Wiley-Interscience (1981). | MR 632548

[6] J. Dixmier, Enveloping algebras, Akademie - Verlag (Berlin, 1977). | MR 498740 | Zbl 0346.17010

[7] A. Hattori, Rank element of a projective module, Nagoya Math. J., 25 (1965), pp. 113--120. | MR 175950 | Zbl 0142.28001

[8] H. Kraft - L. W. Small - N. R. Wallach, Properties and examples of FCR-algebras, Manuscripta math., 104 (2001), pp. 443--450. | MR 1836105 | Zbl 1039.16027

[9] V. D. Mazurov - E. I. Khukhro, The Kourovka notebook. Unsolved problems in group theory, 15th augm. ed, Novosibirsk Institut Matematiki (2002). | MR 1956290 | Zbl 0999.20001

[10] T. Y. Lam, A first course in noncommutative rings, Springer, New York, 2001. | MR 1838439 | Zbl 0980.16001

[11] J. C. Mcconnell - J. C. Robson, Noncommutative noetherian rings, AMS, Providence, R. I., 2001. | MR 1811901 | Zbl 0980.16019

[12] G. Puninski, When a projective module is a direct sum of finitely generated modules, preprint, 2004.

[13] P. Příhoda, Projective modules are determined by their radical factors, J. Pure Appl. Algebra, 210 (2007), pp. 827--835. | MR 2324609 | Zbl 1124.16002

[14] K. W. Roggenkamp, Integral group rings of solvable finite groups have no idempotent ideals, Arch. Math., 25 (1974), pp. 125--128. | MR 342549 | Zbl 0282.20002

[15] L. W. Small - J. C. Robson, Idempotent ideals in P.I. rings, Journal London Math. Soc. (2), 14 (1976), pp. 120--122. | MR 422336 | Zbl 0347.16012

[16] R. G. Swan, Induced representations and projective modules, Ann. of Math., 71 (1960), pp. 552--578. | MR 138688 | Zbl 0104.25102

[17] R. G. Swan, The Grothendieck ring of a finite group, Topology, 2 (1963), pp. 85--110. | MR 153722 | Zbl 0119.02905

[18] J. M. Whitehead, Projective modules and their trace ideals, Comm. Algebra, 8 (19) (1980), pp. 1873--1901. | MR 588450 | Zbl 0447.16018