@article{RSMUP_2009__122__39_0, author = {Amini, Afshin and Amini, Babak and Facchini, Alberto}, title = {Weak Krull-Schmidt for Infinite Direct Sums of Cyclically Presented Modules over Local Rings}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, volume = {122}, year = {2009}, pages = {39-54}, mrnumber = {2582829}, zbl = {pre05663005}, language = {en}, url = {http://dml.mathdoc.fr/item/RSMUP_2009__122__39_0} }
Amini, Afshin; Amini, Babak; Facchini, Alberto. Weak Krull-Schmidt for Infinite Direct Sums of Cyclically Presented Modules over Local Rings. Rendiconti del Seminario Matematico della Università di Padova, Tome 122 (2009) pp. 39-54. http://gdmltest.u-ga.fr/item/RSMUP_2009__122__39_0/
[1] Equivalence of diagonal matrices over local rings, J. Algebra, 320 (2008), pp. 1288-1310. | MR 2427644 | Zbl 1158.16011
- - ,[2] Rings and Categories of Modules, Second edition, GTM 13 (Springer-Verlag, New York, 1992). | MR 1245487 | Zbl 0765.16001
- ,[3] Weak Krull-Schmidt for infinite direct sums of uniserial modules, J. Algebra, 193 (1997), pp. 102-121. | MR 1456570 | Zbl 0885.16008
- ,[4] Krull-Schmidt fails for serial modules, Trans. Amer. Math. Soc., 348 (1996), pp. 4561-4575. | MR 1376546 | Zbl 0868.16003
,[5] Module Theory. Endomorphism rings and direct sum decompositions in some classes of modules, Progress in Math., 167 (Birkhäuser Verlag, Basel, 1998). | MR 1634015 | Zbl 0930.16001
,[6] Monogeny dimension relative to a fixed uniform module, J. Pure Appl. Algebra, 212, no. 9 (2008), pp. 2092-2104. | MR 2422193 | Zbl 1159.16003
- ,[7] Representations of the category of serial modules of finite Goldie dimension, in ``Models, Modules, and Abelian Groups'', R. Göbel and B. Goldsmith Eds., de Gruyter (Berlin-New York, 2008), pp. 463-486. | MR 2513260 | Zbl pre05657729
- ,[8] Weak Krull-Schmidt theorem and direct sum decompositions of serial modules of finite Goldie dimension,J.Algebra281,no.1(2004),pp.332-341. | Zbl 1088.16008
,[9] A version of the weak Krull-Schmidt theorem for infinite direct sums of uniserial modules, Comm. Algebra, 34, no. 4 (2006), pp. 1479-1487. | MR 2224888 | Zbl 1098.16004
,[10] Some model theory over an exceptional uniserial ring and decompositions of serial modules, J. London Math. Soc., 64, no. 2 (2001), pp. 311-326. | MR 1853453 | Zbl 1048.16003
,[11] Some model theory over a nearly simple uniserial domain and decompositions of serial modules, J. Pure Appl. Algebra, 163, no. 3 (2001), pp. 319-337. | MR 1852123 | Zbl 1025.16005
,[12] JR., Purity and algebraic compactness for modules, Pacific J. Math., 28 (1969), pp. 699-719. | MR 242885 | Zbl 0172.04801
,