@article{RSMUP_2009__122__27_0, author = {Ortega-Torres, Elva and Rojas-Medar, Marko}, title = {On the regularity for solutions of the micropolar fluid equations}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, volume = {122}, year = {2009}, pages = {27-37}, mrnumber = {2582828}, zbl = {pre05663004}, language = {en}, url = {http://dml.mathdoc.fr/item/RSMUP_2009__122__27_0} }
Ortega-Torres, Elva; Rojas-Medar, Marko. On the regularity for solutions of the micropolar fluid equations. Rendiconti del Seminario Matematico della Università di Padova, Tome 122 (2009) pp. 27-37. http://gdmltest.u-ga.fr/item/RSMUP_2009__122__27_0/
[1] A new regularity class for the Navier-Stokes equations in Rn , Chin. Ann. of Math., 16B, 4 (1995), pp. 1-6. | Zbl 0837.35111
,[2] Concerning the regularity of the solutions to the NavierStokes equations via the truncation method Part II, In Equations aux dérivées partielles et applications Gauthier-Villars Éd. Sci. Méd. Elsevier (Paris 1998), pp. 127-138. | MR 1648218 | Zbl 0927.35077
,[3] A Sufficient condition on the pressure for the regularity of weak Solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 2 (2000), pp. 99-106. | MR 1765772 | Zbl 0970.35105
,[4] Existence and asymptotic behavior for strong solutions of the Navier-Stokes equations in the whole space, Indiana Univ. Math. J., 36 (1987), pp. 149-166. | MR 876996 | Zbl 0601.35093
,[5] Sufficient conditions for the regularity of the solutions of the Navier-Stokes Equations, Math. Meth. Appl. Sci., 22 (1999), pp. 1079-1085. | MR 1706110 | Zbl 0940.35159
,[6] Regularity criterion intermsofpressure for theNavier-Stokes equations,NonlinearAnal.,46,no.5,Ser.A:TheoryMethods(2001),pp.727-735. | MR 1857154 | Zbl 1007.35064
- ,[7] Theory of micropolar fluids, J. Math. Mech., 16 (1966), pp. 1-8. | MR 204005
,[8] Solutions in Lr to the Navier-Stokes initial value problem, Arch. Rat. Mech. Anal., 89 (1985), pp. 267-281. | MR 786550 | Zbl 0587.35078
- ,[9] A counter-example concerning the pressure in the Navier-Stokes, as t 3 0 , Pacific J. Math., 164 (1994), pp. 351-359. | MR 1272655 | Zbl 0808.35101
- ,[10] A sufficient conditions for smoothness of solutions of NavierStokes equations, Israel J. Math., 6 (1968), pp. 354-358. | MR 244651 | Zbl 0174.15003
,[11] Smoothness of weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 24 (1967), pp. 302-324. | MR 214938 | Zbl 0152.44902
- ,[12] The mathematical theory of viscous incompressible flow, Second edition, Gordon and Breach (New York 1969). | MR 254401 | Zbl 0184.52603
,[13] On the existence, uniqueness and asymptotic properties of solutions of flows of asymmetric fluids, Rend. Accad. Naz. Sci. XL, Mem. Math., 107 (vol. XIII) (1989), pp. 105-120. | MR 1041744 | Zbl 0692.76020
,[14] Micropolar fluids: theory and applications, Birkhäuser (Berlin 1998). | MR 1711268 | Zbl 0923.76003
,[15] Weak solutions of Navier-Stokes equations, Tohoku Math. J., 36 (1984), pp. 623-646. | MR 767409 | Zbl 0568.35077
,[16] Pressure conditions for the local regularity of solutions of the Navier-Stokes equations, EJDE, 1998 (1998), pp. 1-9. | Zbl 0912.35123
,[17] On the uniqueness and regularity of the weak solutions for magneto-micropolar equations, Rev. Mat. Apl., 17 (1996), pp. 75-90. | MR 1413483 | Zbl 0862.76097
- ,[18] Magneto-micropolar fluid motion: existence of weak solution, Rev. Mat. Univ. Complutense de Madrid., Vol. 11, 2 (1998), pp. 443-460. | MR 1666509 | Zbl 0918.35114
- ,[19] On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Rat. Mech. Anal., 9 (1962), pp. 187-195. | MR 136885 | Zbl 0106.18302
,[20] The Navier-Stokes equations, a elementary functional analytic approach, Birkhäuser (Berlin 2001). | MR 1928881 | Zbl 0983.35004
,[21] Navier-Stokes equations, theory and numerical analysis, North - Holland (2nd Revised Edition) (Amsterdam 1979). | MR 603444 | Zbl 0426.35003
,[22] Regularity question for the Navier-Stokes equations, in: R. Rautmann ed., Approximations Methods for the Navier-Stokes Problems, Lectures and Notes in Mathematics, 771 (Springer-Verlag, Berlin 1980), pp. 538-542. | MR 566019 | Zbl 0451.35051
,[23] Existence of global solution to the micropolar fluid system in a bounded domain, Math. Method Appl. Sci., 28 (2005), pp. 1507-1526. | MR 2158216 | Zbl 1078.35096
,