@article{RSMUP_2009__121__233_0, author = {De Philippis, Guido and Paolini, Emanuele}, title = {A short proof of the minimality of Simons cone}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, volume = {122}, year = {2009}, pages = {233-241}, mrnumber = {2542144}, language = {en}, url = {http://dml.mathdoc.fr/item/RSMUP_2009__121__233_0} }
De Philippis, Guido; Paolini, Emanuele. A short proof of the minimality of Simons cone. Rendiconti del Seminario Matematico della Università di Padova, Tome 122 (2009) pp. 233-241. http://gdmltest.u-ga.fr/item/RSMUP_2009__121__233_0/
[1] Lawson cones and the Bernstein theorem. Advances in geometric analysis and continuum mechanics (1993), pp. 44-56. | MR 1356726 | Zbl 0860.53003
- ,[2] Minimal cones and the Bernstein problem, Inventiones math., 7 (1969), pp. 243-268. | MR 250205 | Zbl 0183.25901
- - ,[3] Macsyma and minimal surfaces, Proc. of Symposia in Pure Mathematics, by the Amer. Math. Soc., 44 (1986), pp. 163-169. | MR 840272
- ,[4] On calibrations for Lawson's cones, Rend. Sem. Mat. Univ. Padova, 111 (2004), pp. 55-70. | Numdam | MR 2076732 | Zbl 1127.53047
,[5] Minimal Surfaces and Functions of Bounded Variation, volume 80 of Monographs in Mathematics. Birkhäuser, 1984. | MR 775682 | Zbl 0545.49018
,[6] The equivariant Plateau problem and interior regularity. Trans. Amer. Math. Soc., 173 (1972), pp. 231-249. | MR 308905 | Zbl 0279.49043
,[7] A remark on minimal cones, Boll. Un. Mat. Ital., 6(2-A) (1983), pp. 231-249. | MR 694754 | Zbl 0518.49030
- ,[8] The Bernstein problem in higher dimensions, Boll. Un. Mat. Ital., 2008 (to appear). | Zbl pre05320553
, - .[9] Grafici minimi completi, Ann. Univ. Ferrara, 23 (1977), pp. 269-272. | MR 467551 | Zbl 0367.53001
,[10] Superficie minime e il problema di Plateau, Quaderni di Matematica, Dipartimento di Matematica ``De Giorgi'', Università degli studi di Lecce, 2006.
,[11] Calibrations and new singularities in area-minimizing surfaces: A survey, Variatonal methods, Proc. Conf. (Paris/Fr. 1988), Prog. nonlinear Differ. Equ. Appl., 4 (1990), pp. 392-342. | MR 1205164 | Zbl 0721.53058
,[12] A class of minimal cones in Rn , n ! 8, that minimize area, PhD thesis, University of California, 1973. | MR 331197
,