@article{RSMUP_2007__117__113_0, author = {Ascanelli, Alessia}, title = {Well posedness under Levi conditions for a degenerate second order Cauchy problem}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, volume = {117}, year = {2007}, pages = {113-126}, mrnumber = {2351788}, zbl = {1146.35054}, language = {en}, url = {http://dml.mathdoc.fr/item/RSMUP_2007__117__113_0} }
Ascanelli, Alessia. Well posedness under Levi conditions for a degenerate second order Cauchy problem. Rendiconti del Seminario Matematico della Università di Padova, Tome 117 (2007) pp. 113-126. http://gdmltest.u-ga.fr/item/RSMUP_2007__117__113_0/
[1] Energy estimate and Fundamental Solution for Degenerate Hyperbolic Cauchy problems. J. Differential Equations, 217 (2005), pp. 305-340. | MR 2168825 | Zbl 1087.35066
- ,[2] Well posedness of the Cauchy problem for some degenerate hyperbolic operators. Pseudo-Differential Operators and Related Topics, Series: Operator Theory: Advances and Applications, Vol. 164, Editors: P. Boggiatto, L. Rodino, J. Toft, M.-W. Wong, Birkhuser Verlag Basel/Switzerland (2006), pp. 23-41. | MR 2243964 | Zbl 1101.35058
- ,[3] The Cauchy problem for hyperbolic operators with characteristics of variable multiplicity. Trudy Moskov. Mat. Obshch. 41 (1980), pp. 83-99. | MR 611140 | Zbl 0468.35062
,[4] The Cauchy problem for strictly hyperbolic operators with non-absolutely continuous coefficients. Tsukuba J. Math. 27 (2003), pp. 1-12. | MR 1999231 | Zbl 1041.35049
,[5] Coefficients with unbounded derivatives in hyperbolic equations. Math. Nachr. 277 (2004), pp. 1-16. | MR 2100045 | Zbl 1060.35071
,[6] Sur les équations hyperboliques avec des coefficients qui ne dépendent que du temps. Ann. Sc. Norm. Sup. Pisa 6 (1979), pp. 511-559. | Numdam | MR 553796 | Zbl 0417.35049
- - ,[7] Well posedness of the Cauchy problem for a hyperbolic equation with non-Lipschitz coefficients. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 1 (2002), pp. 327-358. | Numdam | MR 1991143 | Zbl 1098.35094
- - ,[8] On the optimal regularity coefficients in hyperbolic Cauchy problem, Bull. Sci. Math. 127 (2003), pp. 328-347. | MR 1988632 | Zbl 1037.35038
- - ,[9] On the Cauchy problem for finitely degenerate hyperbolic equations of second order. Ark. Mat. 38 (2000), pp. 223-230. | MR 1785400 | Zbl 1073.35145
- - ,[10] Well posedness in Gevrey classes of the Cauchy problem for a non strictly hyperbolic equation with coefficients depending on time. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 10 (1983), pp. 291-312. | Numdam | MR 728438 | Zbl 0543.35056
- - ,[11] On finitely degenerate hyperbolic operators of second order. Osaka J. Math. 41, 4 (2004) pp. 933-947. | MR 2116346 | Zbl 1068.35078
- ,[12] Conditions for correctness in Gevrey classes of the Cauchy problem for hyperbolic operators with characteristics of variable multiplicity. (Russian) Sibirsk. Mat. ZÏ. 17 (1976), pp. 1256-1270. | MR 454368 | Zbl 0352.35060
,[13] Cauchy problem for nonstrictly hyperbolic systems in Gevrey classes. J. Math. Kyoto Univ. 23-3 (1983), pp. 599-616. | MR 721386 | Zbl 0544.35063
,[14] Construction of parametrix for hyperbolic equations with fast oscillations in non-Lipschitz coefficients. Comm. Partial Differential Equations 28 (2003), pp. 1471-1502. | MR 1998944 | Zbl 1036.35118
- ,[15] On the Cauchy problem. Notes and Reports in Mathematics in Science and Engineering, 3. Academic Press, Inc., Orlando, FL; Science Press, Beijing, 1985. | MR 860041 | Zbl 0616.35002
,[16] The Cauchy problem for weakly hyperbolic equations of second order. Comm. Partial Differential Equations, 5 (1980), pp. 1273-1296. | MR 593968 | Zbl 0497.35053
,