@article{RSMUP_2006__115__1_0,
author = {Huppert, Bertram},
title = {Some simple groups which are determined by the set of their character degrees. II},
journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
volume = {115},
year = {2006},
pages = {1-13},
mrnumber = {2245583},
zbl = {1156.20008},
language = {en},
url = {http://dml.mathdoc.fr/item/RSMUP_2006__115__1_0}
}
Huppert, Bertram. Some simple groups which are determined by the set of their character degrees. II. Rendiconti del Seminario Matematico della Università di Padova, Tome 115 (2006) pp. 1-13. http://gdmltest.u-ga.fr/item/RSMUP_2006__115__1_0/
[1] , Finite groups of Lie type. Wiley - Interscience, New York 1985. | MR 794307 | Zbl 0567.20023
[2] , , , Hecke algebras and characters of parabolic type of finite groups with (B, N)-pairs. Inst. Hautes Études Sci. Publ. Math. No. 40 (1971), pp. 81-116. | Numdam | MR 347996 | Zbl 0254.20004
[3] , Group Representation Theory, Marcel Dekker 1971. | MR 347959 | Zbl 0227.20002
[4] , , On finite rational groups. Illinois J. Math. 33 (1988), pp. 103-131. | MR 974014 | Zbl 0701.20005
[5] , , The character tables for SL(3, q), SU(3, q2 ), PSL(3, q), PSU(3, q2 ). Canadian J. Math. 25 (1973), pp. 486-494. | MR 335618 | Zbl 0264.20010
[6] , Endliche Gruppen I, Springer 1967. | MR 224703 | Zbl 0217.07201
[7] , Some simple groups which are determined by the set of their character degrees I. Illinois J. Math. 44 (2000), pp. 828-842. | MR 1804317 | Zbl 0972.20006
[8] , Character theory of finite groups, Academic Press, 1976. | MR 460423 | Zbl 0337.20005
[9] , Charakterisierung der Gruppen PSL(2, p f ) und PSU(3, p2f ) durch ihre Charaktertafel. J. Algebra, 24 (1973), pp. 127-153. | MR 315005 | Zbl 0249.20023
[10] , , Prime power degree representations of quasi-simple groups, Arch. Math., 77 (2001), pp. 461-468. | MR 1879049 | Zbl 0996.20006
[11] , On a class of doubly transitive groups, Ann. Math., 75 (1962), pp. 105-145. | MR 136646 | Zbl 0106.24702
[12] , On Ree's series of simple groups. Trans. Amer. Math. Soc., 121 (1966), pp. 62-89. | MR 197587 | Zbl 0139.24902