@article{RSMUP_2004__112__173_0, author = {Abdollahi, A. and Mohammadi Hassanabadi, A.}, title = {Characterization of abelian-by-cyclic 3-rewritable groups}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, volume = {111}, year = {2004}, pages = {173-180}, mrnumber = {2109960}, zbl = {1138.20035}, language = {en}, url = {http://dml.mathdoc.fr/item/RSMUP_2004__112__173_0} }
Abdollahi, A.; Mohammadi Hassanabadi, A. Characterization of abelian-by-cyclic 3-rewritable groups. Rendiconti del Seminario Matematico della Università di Padova, Tome 111 (2004) pp. 173-180. http://gdmltest.u-ga.fr/item/RSMUP_2004__112__173_0/
[1] 3-rewritable nilpotent 2-groups of class 2, to appear in Comm. Algebra, 32 (2004). | MR 2149067 | Zbl 1088.20007
- ,[2] On the 4-permutational property, Arch. Math. (Basel), 48, No. 4, (1987), pp. 281-285. | MR 884558 | Zbl 0623.20022
- - ,[3] Odd order groups with the rewriting property Q3 , Arch. Math. (Basel), 78, No. 5 (2002), pp. 337-344. | MR 1903666 | Zbl 1011.20024
,[4] Rewriting products of group elements-II, J. Algebra, 119 (1988), pp. 246-259. | MR 971358 | Zbl 0663.20036
,[5] Rewriting products of group elements-I, J. Algebra, 116 (1988), pp. 506-521. | MR 953167 | Zbl 0647.20033
,[6] Semisimple groups with the rewriting property Q5, Comm. Algebra, 23, No. 6 (1995), pp. 2171-2180. | MR 1327132 | Zbl 0831.20027
- ,[7] Zur theorie der untergruppenabgeshlossenen formationen: Endlich varietäten, J. Algebra, 73 (1981), pp. 1-22. | MR 641629 | Zbl 0484.20012
,[8] Su di un problema combinatorio in teoria dei gruppi, Atti Acc. Lincei Rend. Sem. Mat. Fis. Nat., 74 (1983), pp. 136-142. | MR 739397 | Zbl 0528.20031
- - ,[9] On a permutational properties of groups, Arch. Math. (basel), 44 (1985), pp. 385-389. | MR 792360 | Zbl 0544.20036
- - - ,[10] The classification of groups in which every product of four elements can be reordered, Rend. Semin. Mat. Univ. Padova, 93 (1995), pp. 7-26. | Numdam | MR 1354348 | Zbl 0838.20038
- - ,[11] Finite 2-groups of class 2 in which every product of four elements can be reordered, Illinois Journal of Mathematics, 35, No. 2 (1991), pp. 198-219. | MR 1091438 | Zbl 0698.20013
- ,[12] On the derived length of groups with some permutational property, J. Algebra 136, No. 1 (1991), pp. 86-91. | MR 1085122 | Zbl 0721.20022
,[13] Non-nilpotent groups in which every product of four elements can be reordered, Can. J. Math., 42, No. 6 (1990), pp. 1053-1066. | MR 1099457 | Zbl 0727.20027
- ,[14] A course in the theory of groups, 2nd ed., Berlin-New York, 1995. | MR 1357169 | Zbl 0836.20001
,