@article{RSMUP_2004__112__103_0, author = {Galanis, George N.}, title = {Differential and geometric structure for the tangent bundle of a projective limit manifold}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, volume = {111}, year = {2004}, pages = {103-115}, mrnumber = {2109955}, zbl = {1121.58007}, language = {en}, url = {http://dml.mathdoc.fr/item/RSMUP_2004__112__103_0} }
Galanis, George N. Differential and geometric structure for the tangent bundle of a projective limit manifold. Rendiconti del Seminario Matematico della Università di Padova, Tome 111 (2004) pp. 103-115. http://gdmltest.u-ga.fr/item/RSMUP_2004__112__103_0/
[1] On a type of linear differential equations in Fréchet spaces, Annali della Scuola Normale Superiore di Pisa, 4, No. 24 (1997), pp. 501-510. | Numdam | MR 1612393 | Zbl 0902.34052
,[2] A Floquet-Liapunov theorem in Fréchet spaces, Annali della Scuola Normale Superiore di Pisa (4), 27 (1998), pp. 427-436. | Numdam | MR 1678010 | Zbl 0932.34061
- ,[3] Projective limits of Banach-Lie groups, Periodica Mathematica Hungarica, 32 (1996), pp. 179-191. | MR 1407918 | Zbl 0866.58009
,[4] The inverse functions theorem of Nash and Moser, Bull. of Amer. Math. Soc., 7 (1982), pp. 65-222. | MR 656198 | Zbl 0499.58003
,[5] On a differential structure for the group of diffeomorphisms, Topology, 46 (1967), pp. 263-271. | MR 210147 | Zbl 0147.23601
,[6] On differential structure for projective limits of manifolds, J. Geom. Phys., 29, no. 1-2 (1999), pp. 35-63. | MR 1668101 | Zbl 0935.58008
- ,[7] The convenient setting of global analysis, Mathematical Surveys and Monographs, 53 American Mathematical Society. | MR 1471480 | Zbl 0889.58001
- ,[8] Infinite Dimensional Lie Transformation Groups, Lecture Notes in Mathematics, 427 (1974), Springer-Verlag. | MR 431262 | Zbl 0328.58005
,[9] Topological Vector Spaces, Springer, Berlin, 1980. | MR 585865 | Zbl 0435.46003
,[10] Maps and forms on generalised manifolds, St. Cerc. Mat., 26 (1974), pp. 133-143 (in romanian). | MR 365610
,[11] A de Rham Theorem for generalised manifolds, Proc. Edinburg Math. Soc., 22 (1979), pp. 127-135. | MR 549458 | Zbl 0413.58005
,[12] Connections on tangent bundles, J. Diff. Geom., 41 (1967), pp. 235-243. | MR 229168 | Zbl 0162.53603
,