@article{RSMUP_2003__109__283_0, author = {Huang, Feimin and Zhao, Huijiang}, title = {On the global stability of contact discontinuity for compressible Navier-Stokes equations}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, volume = {110}, year = {2003}, pages = {283-305}, mrnumber = {1997992}, zbl = {1165.35434}, language = {en}, url = {http://dml.mathdoc.fr/item/RSMUP_2003__109__283_0} }
Huang, Feimin; Zhao, Huijiang. On the global stability of contact discontinuity for compressible Navier-Stokes equations. Rendiconti del Seminario Matematico della Università di Padova, Tome 110 (2003) pp. 283-305. http://gdmltest.u-ga.fr/item/RSMUP_2003__109__283_0/
[1] Similarity solutions of the nonlinear diffusion equation, Arch. rational Mech. Anal., 54 (1974), pp. 373-392. | MR 344559 | Zbl 0293.35039
- ,[2] A class of similarity solution of the nonlinear diffusion equation, Nonlinear Analysis, T.M.A., 1 (1977), pp. 223-233. | MR 511671 | Zbl 0394.34016
- ,[3] On the stability of contact discontinuity for compressible Navier-Stokes equations with free boundary, to appear in Osaka J. Math. | MR 2040072 | Zbl 1062.35066
- - ,[4] A gas-solid free boundary problem for a compressible viscous gas, to appear in SIAM J. Math. Anal., 2003. | MR 2000974 | Zbl 1035.35070
- - ,[5] Nonlinear diffusive phenomena of nonlinear hyperbolic systems, Chin. Ann. Math. B, 14:4 (1993), pp. 465-480. | MR 1254543 | Zbl 0804.35072
- ,[6] Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion, Commun. Math. Phys., 101 (1985), pp. 97-127. | MR 814544 | Zbl 0624.76095
- ,[7] Asymptotic behavior of solutions for the equations of a viscous heat-conductive gas, Proc. Japan Acad., Ser. A, 62 (1986), pp. 249-252. | MR 868811 | Zbl 0624.76097
- - ,[8] Shock waves for compressible Navier-Stokes equations are stable, Comm. Pure Appl. Math., XXXIX (1986), pp. 565-594. | MR 849424 | Zbl 0617.76069
,[9] Nonlinear stability of rarefaction waves for compressible Navier-Stokes equations, Comm. Math. Phys., 118 (1988), pp. 451-465. | MR 958806 | Zbl 0682.35087
- ,[10] Pointwise decay to contact discontinuities for systems of viscous conservation laws, Asian J. Math., 1, no. 1 (1997), pp. 34-84. | MR 1480990 | Zbl 0928.35095
- ,[11] Convergence to travelling fronts of solutions of the p-system with viscosity in the presence of a boundary, Arch. Rat. Mech. Anal., 146 (1999), pp. 1-22. | MR 1682659 | Zbl 0957.76072
- ,[12] On the stability of traveling wave solutions of a one-dimensional model system for compressible viscous gas, Japan J. Appl. Math., 2 (1985), pp. 17-25. | MR 839317 | Zbl 0602.76080
- ,[13] Asymptotics toward the rarefaction wave of the solutions of a one-dimensional model system for compressible viscous gas, Japan J. Appl. Math., 3 (1986), pp. 1-13. | MR 899210 | Zbl 0612.76086
- ,[14] Global stability of the rarefaction wave of a one-dimensional model system for compressible viscous gas, Commun. Math. Phys., 144 (1992), pp. 325-335. | MR 1152375 | Zbl 0745.76069
- ,[15] Global asymptotics toward the rarefaction wave for solutions of viscous p-system with boundary effect, Q. Appl. Math., Vol. LVIII (2000), pp. 69-83. | MR 1738558 | Zbl 1157.35318
- ,[16] Stability of stationary solutions to the halfspace problem for the discrete Boltzmann equation with multiple collisions, Kyushu J. Math., 54, no. 2 (2000), pp. 233-255. | MR 1793167 | Zbl 0965.35129
- ,[17] Nonlinear stability of strong rarefaction waves for compressible Navier-Stokes equations, Preprint 2002. | MR 2083790 | Zbl 1065.35057
- - ,[18] Global stability of strong rarefaction waves for compressible Navier-Stokes equations with boundary effects, in preparation.
- ,[19] Asymptotic behavior of a one-dimensional compressible viscous gas with free boundary, to appear in SIAM J. Math. Anal. | MR 1951775 | Zbl 1034.35075
- - ,[20] On nonlinear stability of contact discontinuities, Proceeding of 5th international conferences on hyperbolic problems: theory, numerics and applications, edited by Glimm, etc., World Scientific, 1996, pp. 249-257. | MR 1446032 | Zbl 0918.35117
,