@article{RSMUP_2001__106__65_0, author = {Novo, S\'ebastien and Novotn\'y, Anton\'\i n and Pokorn\'y, Milan}, title = {Some notes to the transport equation and to the Green formula}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, volume = {106}, year = {2001}, pages = {65-76}, mrnumber = {1876213}, zbl = {02216799}, language = {en}, url = {http://dml.mathdoc.fr/item/RSMUP_2001__106__65_0} }
Novo, Sébastien; Novotný, Antonín; Pokorný, Milan. Some notes to the transport equation and to the Green formula. Rendiconti del Seminario Matematico della Università di Padova, Tome 106 (2001) pp. 65-76. http://gdmltest.u-ga.fr/item/RSMUP_2001__106__65_0/
[1] Existence results in Sobolev spaces for a stationary transport equation, Ricerche di Mathematica, Vol. in honour of Prof. Miranda (1987), pp. 173-184. | MR 956025 | Zbl 0691.35087
,[2] L. LIONS, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98 (1989), pp. 511-547. | MR 1022305 | Zbl 0696.34049
- P.[3] Analysis of a two dimensional grade-two fluid model with a tangential boundary condition, Journal des Math. Pures et Appl., 78 (1999), pp. 981-1011. | MR 1732050 | Zbl 0961.35116
- ,[4] About the steady transport equation, in: Proceedings of Fifth Winter School at Paseky, Pitman Research Notes in Mathematics (1998), pp. 118-146. | MR 1692347 | Zbl 0941.35079
:[5] Lemme de Friedrichs. Théorème de densité résultant du Lemme de Friedrichs, Rapport de stage dirigé par C. Goulaouic, DEA Université de Rennes (1967).
- ,