@article{RSMUP_2001__106__165_0, author = {Pasquali, Sara}, title = {The stochastic logistic equation : stationary solutions and their stability}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, volume = {106}, year = {2001}, pages = {165-183}, mrnumber = {1876219}, zbl = {02216803}, language = {en}, url = {http://dml.mathdoc.fr/item/RSMUP_2001__106__165_0} }
Pasquali, Sara. The stochastic logistic equation : stationary solutions and their stability. Rendiconti del Seminario Matematico della Università di Padova, Tome 106 (2001) pp. 165-183. http://gdmltest.u-ga.fr/item/RSMUP_2001__106__165_0/
[1] M. KRSTIC, Stochastic nonlinear stabilization, Systems Control Lett., 32 (1997), pp. 143-159. | MR 1492434 | Zbl 0902.93049
-[2] Lyapunov-like techniques for stochastic stability, SIAM J. Control Optim., 33 (1995), pp. 1151-1169. | MR 1339059 | Zbl 0845.93085
,[3] Handbook of stochastic methods, Springer-Verlag, Berlin, 1985. | MR 858704
,[4] Stochastic stability of differential equations, Sijthoff & Noordhoff, Alphen aan den Rijn, 1980. | MR 600653 | Zbl 0441.60060
,[5] Numerical solution of stochastic differential equations, Applications of Mathematics Series Vol. 23, Springer-Verlag, Heidelberg, 1992. | MR 1214374 | Zbl 0752.60043
- ,[6] Stochastic stability and control, Academic Press, New York, 1967. | MR 216894 | Zbl 0244.93065
,[7] B. ØKSENDAL, Optimal harvesting from a population in a stochastic crowded environment, Math. Biosci., 145 (1997), pp. 47-75. | MR 1478875 | Zbl 0885.60052
-[8] Fokker-Planck equation, Springer-Verlag, Berlin, 1984. | MR 749386 | Zbl 0546.60084