p-adic completions and automorphisms of nilpotent groups
Göbel, Rüdiger ; Paras, Agnes T.
Rendiconti del Seminario Matematico della Università di Padova, Tome 106 (2001), p. 193-206 / Harvested from Numdam
Publié le : 2001-01-01
@article{RSMUP_2001__105__193_0,
     author = {G\"obel, R\"udiger and Paras, Agnes T.},
     title = {$p$-adic completions and automorphisms of nilpotent groups},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     volume = {106},
     year = {2001},
     pages = {193-206},
     mrnumber = {1834990},
     zbl = {1076.20028},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RSMUP_2001__105__193_0}
}
Göbel, Rüdiger; Paras, Agnes T. $p$-adic completions and automorphisms of nilpotent groups. Rendiconti del Seminario Matematico della Università di Padova, Tome 106 (2001) pp. 193-206. http://gdmltest.u-ga.fr/item/RSMUP_2001__105__193_0/

[1] A.L.S. Corner - R. Göbel, Prescribing endomorphism algebras - a unified treatment, Proc. London Math. Soc., 50 (1985), pp. 447-479. | MR 779399 | Zbl 0562.20030

[2] M. Dugas - R. GÖBEL, Torsion-free nilpotent groups and E-modules, Arch. Math., 54 (1990), pp. 340-351. | MR 1042126 | Zbl 0703.20033

[3] M. Dugas - R. GÖBEL, Automorphisms of torsion-free nilpotent groups of class 2, Trans. Amer. Math. Soc., 332 (1992), pp. 633-646. | MR 1052906 | Zbl 0773.20007

[4] R. Göbel - A.T. Paras, Outer automorphism groups of metabelian groups, J. of Pure and Applied Algebra, 149 (2000), pp. 251-266. | MR 1762767 | Zbl 0968.20020

[5] R. Göbel - A.T. Paras, Realizing automorphism groups of metabelian groups, Abelian Groups and Modules, Trends in Mathematics, Birkhäuser (1999), pp. 309-317. | MR 1735578 | Zbl 0956.20037

[6] M. Hall Jr., The Theory of Groups, Macmillan, 1973. | MR 103215 | Zbl 0116.25403

[7] R.B. Warfield Jr., Nilpotent Groups, Lecture Notes in Math., vol. 513, Springer, 1976. | MR 409661 | Zbl 0347.20018